Self-supervised Pre-training of Text Recognizers
- URL: http://arxiv.org/abs/2405.00420v1
- Date: Wed, 1 May 2024 09:58:57 GMT
- Title: Self-supervised Pre-training of Text Recognizers
- Authors: Martin Kišš, Michal Hradiš,
- Abstract summary: We study self-supervised pre-training methods based on masked label prediction.
We perform experiments on historical handwritten (Bentham) and historical printed datasets.
The evaluation shows that the self-supervised pre-training on data from the target domain is very effective, but it struggles to outperform transfer learning from closely related domains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate self-supervised pre-training methods for document text recognition. Nowadays, large unlabeled datasets can be collected for many research tasks, including text recognition, but it is costly to annotate them. Therefore, methods utilizing unlabeled data are researched. We study self-supervised pre-training methods based on masked label prediction using three different approaches -- Feature Quantization, VQ-VAE, and Post-Quantized AE. We also investigate joint-embedding approaches with VICReg and NT-Xent objectives, for which we propose an image shifting technique to prevent model collapse where it relies solely on positional encoding while completely ignoring the input image. We perform our experiments on historical handwritten (Bentham) and historical printed datasets mainly to investigate the benefits of the self-supervised pre-training techniques with different amounts of annotated target domain data. We use transfer learning as strong baselines. The evaluation shows that the self-supervised pre-training on data from the target domain is very effective, but it struggles to outperform transfer learning from closely related domains. This paper is one of the first researches exploring self-supervised pre-training in document text recognition, and we believe that it will become a cornerstone for future research in this area. We made our implementation of the investigated methods publicly available at https://github.com/DCGM/pero-pretraining.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Probing Language Models for Pre-training Data Detection [11.37731401086372]
We propose to utilize the probing technique for pre-training data detection by examining the model's internal activations.
Our method is simple and effective and leads to more trustworthy pre-training data detection.
arXiv Detail & Related papers (2024-06-03T13:58:04Z) - CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples.
Existing methods in video action recognition rely on large labeled datasets from the same domain.
We propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning.
arXiv Detail & Related papers (2023-09-07T19:44:27Z) - Privacy Leakage in Text Classification: A Data Extraction Approach [9.045332526072828]
We study the potential privacy leakage in the text classification domain by investigating the problem of unintended memorization of training data.
We propose an algorithm to extract missing tokens of a partial text by exploiting the likelihood of the class label provided by the model.
arXiv Detail & Related papers (2022-06-09T16:14:26Z) - Towards Textual Out-of-Domain Detection without In-Domain Labels [41.23096594140221]
This work focuses on a challenging case of OOD detection, where no labels for in-domain data are accessible.
We first evaluate different language model based approaches that predict likelihood for a sequence of tokens.
We propose a novel representation learning based method by combining unsupervised clustering and contrastive learning.
arXiv Detail & Related papers (2022-03-22T00:11:46Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.