MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation
- URL: http://arxiv.org/abs/2405.00448v4
- Date: Wed, 20 Nov 2024 09:40:14 GMT
- Title: MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation
- Authors: Xujie Zhang, Ente Lin, Xiu Li, Yuxuan Luo, Michael Kampffmeyer, Xin Dong, Xiaodan Liang,
- Abstract summary: MMTryon is a multi-modal multi-reference VIrtual Try-ON framework.
It can generate high-quality compositional try-on results by taking a text instruction and multiple garment images as inputs.
- Score: 70.83668869857665
- License:
- Abstract: This paper introduces MMTryon, a multi-modal multi-reference VIrtual Try-ON (VITON) framework, which can generate high-quality compositional try-on results by taking a text instruction and multiple garment images as inputs. Our MMTryon addresses three problems overlooked in prior literature: 1) Support of multiple try-on items. Existing methods are commonly designed for single-item try-on tasks (e.g., upper/lower garments, dresses). 2)Specification of dressing style. Existing methods are unable to customize dressing styles based on instructions (e.g., zipped/unzipped, tuck-in/tuck-out, etc.) 3) Segmentation Dependency. They further heavily rely on category-specific segmentation models to identify the replacement regions, with segmentation errors directly leading to significant artifacts in the try-on results. To address the first two issues, our MMTryon introduces a novel multi-modality and multi-reference attention mechanism to combine the garment information from reference images and dressing-style information from text instructions. Besides, to remove the segmentation dependency, MMTryon uses a parsing-free garment encoder and leverages a novel scalable data generation pipeline to convert existing VITON datasets to a form that allows MMTryon to be trained without requiring any explicit segmentation. Extensive experiments on high-resolution benchmarks and in-the-wild test sets demonstrate MMTryon's superiority over existing SOTA methods both qualitatively and quantitatively. MMTryon's impressive performance on multi-item and style-controllable virtual try-on scenarios and its ability to try on any outfit in a large variety of scenarios from any source image, opens up a new avenue for future investigation in the fashion community.
Related papers
- OVMR: Open-Vocabulary Recognition with Multi-Modal References [96.21248144937627]
Existing works have proposed different methods to embed category cues into the model, eg, through few-shot fine-tuning.
This paper tackles open-vocabulary recognition from a different perspective by referring to multi-modal clues composed of textual descriptions and exemplar images.
The proposed OVMR is a plug-and-play module, and works well with exemplar images randomly crawled from the Internet.
arXiv Detail & Related papers (2024-06-07T06:45:28Z) - Multi-Modal Generative Embedding Model [34.34876575183736]
We propose a Multi-Modal Generative Embedding Model (MM-GEM), whereby the generative and embedding objectives are encapsulated in one Large Language Model.
For example, MM-GEM instantiated from ViT-Large and TinyLlama shows competitive performance on benchmarks for multimodal embedding models.
The advanced text model in MM-GEM brings over 5% improvement in Recall@1 for long text and image retrieval.
arXiv Detail & Related papers (2024-05-29T17:59:10Z) - MOWA: Multiple-in-One Image Warping Model [65.73060159073644]
We propose a Multiple-in-One image warping model (named MOWA) in this work.
We mitigate the difficulty of multi-task learning by disentangling the motion estimation at both the region level and pixel level.
To our knowledge, this is the first work that solves multiple practical warping tasks in one single model.
arXiv Detail & Related papers (2024-04-16T16:50:35Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
This paper presents MM-Interleaved, an end-to-end generative model for interleaved image-text data.
It introduces a multi-scale and multi-image feature synchronizer module, allowing direct access to fine-grained image features in the previous context.
Experiments demonstrate the versatility of MM-Interleaved in recognizing visual details following multi-modal instructions and generating consistent images following both textual and visual conditions.
arXiv Detail & Related papers (2024-01-18T18:50:16Z) - Fashion Image Retrieval with Multi-Granular Alignment [4.109124423081812]
Fashion image retrieval task aims to search relevant clothing items of a query image from the gallery.
Previous recipes focus on designing different distance-based loss functions, pulling relevant pairs to be close and pushing irrelevant images apart.
We propose a novel fashion image retrieval method leveraging both global and fine-grained features, dubbed Multi-Granular Alignment (MGA)
arXiv Detail & Related papers (2023-02-16T10:43:31Z) - FaD-VLP: Fashion Vision-and-Language Pre-training towards Unified
Retrieval and Captioning [66.38951790650887]
Multimodal tasks in the fashion domain have significant potential for e-commerce.
We propose a novel fashion-specific pre-training framework based on weakly-supervised triplets constructed from fashion image-text pairs.
We show the triplet-based tasks are an effective addition to standard multimodal pre-training tasks.
arXiv Detail & Related papers (2022-10-26T21:01:19Z) - Multi-View Document Representation Learning for Open-Domain Dense
Retrieval [87.11836738011007]
This paper proposes a multi-view document representation learning framework.
It aims to produce multi-view embeddings to represent documents and enforce them to align with different queries.
Experiments show our method outperforms recent works and achieves state-of-the-art results.
arXiv Detail & Related papers (2022-03-16T03:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.