Swarm Learning: A Survey of Concepts, Applications, and Trends
- URL: http://arxiv.org/abs/2405.00556v1
- Date: Wed, 1 May 2024 14:59:24 GMT
- Title: Swarm Learning: A Survey of Concepts, Applications, and Trends
- Authors: Elham Shammar, Xiaohui Cui, Mohammed A. A. Al-qaness,
- Abstract summary: Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers.
Federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework.
Swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE)
SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management.
- Score: 3.55026004901472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers. As the number of Internet of Things (IoT) devices increases, artificial intelligence (AI) will be crucial for resource management, data processing, and knowledge acquisition. To address those issues, federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework that operates in a decentralized and hardware-agnostic manner. However, FL faces network bandwidth limitations and data breaches. To reduce the central dependency in FL and increase scalability, swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE). SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management. A blockchain-based network enables the exchange and aggregation of model parameters among participants, thus mitigating the risk of a single point of failure and eliminating communication bottlenecks. To the best of our knowledge, this survey is the first to introduce the principles of Swarm Learning, its architectural design, and its fields of application. In addition, it highlights numerous research avenues that require further exploration by academic and industry communities to unlock the full potential and applications of SL.
Related papers
- Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - A Blockchain Solution for Collaborative Machine Learning over IoT [0.31410859223862103]
Federated learning (FL) and blockchain technologies have emerged as promising approaches to address these challenges.
We present a novel IoT solution that combines the incremental learning vector quantization algorithm (XuILVQ) with blockchain technology.
Our proposed architecture addresses the shortcomings of existing blockchain-based FL solutions by reducing computational and communication overheads while maintaining data privacy and security.
arXiv Detail & Related papers (2023-11-23T18:06:05Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission.
On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing.
This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures.
arXiv Detail & Related papers (2023-06-29T23:43:25Z) - APPFLChain: A Privacy Protection Distributed Artificial-Intelligence
Architecture Based on Federated Learning and Consortium Blockchain [6.054775780656853]
We propose a new system architecture called APPFLChain.
It is an integrated architecture of a Hyperledger Fabric-based blockchain and a federated-learning paradigm.
Our new system can maintain a high degree of security and privacy as users do not need to share sensitive personal information to the server.
arXiv Detail & Related papers (2022-06-26T05:30:07Z) - Demystifying Swarm Learning: A New Paradigm of Blockchain-based
Decentralized Federated Learning [0.9638328197615845]
Federated learning (FL) is an emerging promising privacy-preserving machine learning paradigm.
FL keeps users' private data on devices and exchanges the gradients of local models to cooperatively train a shared Deep Learning (DL) model on central custodians.
Swarm Learning (SL) introduces a permissioned blockchain to securely onboard members and dynamically elect the leader.
arXiv Detail & Related papers (2022-01-14T03:13:29Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Fusion of Federated Learning and Industrial Internet of Things: A Survey [4.810675235074399]
Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era.
Smart machines and smart factories use machine learning/deep learning based models for incurring intelligence.
In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models.
arXiv Detail & Related papers (2021-01-04T06:28:32Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.