Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure
- URL: http://arxiv.org/abs/2405.00631v1
- Date: Wed, 1 May 2024 16:58:22 GMT
- Title: Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure
- Authors: Assefa Seyoum Wahd,
- Abstract summary: We propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs)
In the experiments, we found that metric learning-based loss functions perform better than the softmax.
Our approach outperforms strong baselines in conventional OOD detection metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel approach that combines deep metric learning and synthetic data generation using diffusion models for out-of-distribution (OOD) detection. One popular approach for OOD detection is outlier exposure, where models are trained using a mixture of in-distribution (ID) samples and ``seen" OOD samples. For the OOD samples, the model is trained to minimize the KL divergence between the output probability and the uniform distribution while correctly classifying the in-distribution (ID) data. In this paper, we propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs). Additionally, we explore recent advancements in metric learning to train our models. In the experiments, we found that metric learning-based loss functions perform better than the softmax. Furthermore, the baseline models (including softmax, and metric learning) show a significant improvement when trained with the generated OOD data. Our approach outperforms strong baselines in conventional OOD detection metrics.
Related papers
- Learning Multi-Manifold Embedding for Out-Of-Distribution Detection [16.283293167689948]
Out-of-distribution (OOD) samples are crucial for trustworthy AI in real-world applications.
This paper introduces a novel Multi-Manifold Embedding Learning (MMEL) framework for enhanced OOD detection.
MMEL generates representative embeddings and employs a prototype-aware scoring function to differentiate OOD samples.
arXiv Detail & Related papers (2024-09-19T05:43:00Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
We introduce textitFlowCon, a new density-based OOD detection technique.
Our main innovation lies in efficiently combining the properties of normalizing flow with supervised contrastive learning.
Empirical evaluation shows the enhanced performance of our method across common vision datasets.
arXiv Detail & Related papers (2024-07-03T20:33:56Z) - OAL: Enhancing OOD Detection Using Latent Diffusion [5.357756138014614]
Outlier Aware Learning (OAL) framework synthesizes OOD training data directly in the latent space.
We introduce a mutual information-based contrastive learning approach that amplifies the distinction between In-Distribution (ID) and collected OOD features.
arXiv Detail & Related papers (2024-06-24T11:01:43Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications.
Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers.
We propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers.
arXiv Detail & Related papers (2023-10-21T07:16:09Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
In programming, learning code representations has a variety of applications, including code classification, code search, comment generation, bug prediction, and so on.
We propose the use of an energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models.
arXiv Detail & Related papers (2021-12-20T06:28:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.