Learning to Compose: Improving Object Centric Learning by Injecting Compositionality
- URL: http://arxiv.org/abs/2405.00646v1
- Date: Wed, 1 May 2024 17:21:36 GMT
- Title: Learning to Compose: Improving Object Centric Learning by Injecting Compositionality
- Authors: Whie Jung, Jaehoon Yoo, Sungjin Ahn, Seunghoon Hong,
- Abstract summary: compositional representation is a key aspect of object-centric learning.
Most of the existing approaches rely on auto-encoding objective.
We propose a novel objective that explicitly encourages compositionality of the representations.
- Score: 27.364435779446072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
Related papers
- IMPRINT: Generative Object Compositing by Learning Identity-Preserving Representation [40.34581973675213]
IMPRINT is a novel diffusion-based generative model trained with a two-stage learning framework.
The first stage is targeted for context-agnostic, identity-preserving pretraining of the object encoder.
The second stage leverages this representation to learn seamless harmonization of the object composited to the background.
arXiv Detail & Related papers (2024-03-15T21:37:04Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based approaches.
We use a transformer encoder to extract object representations and graph neural networks to approximate the dynamics of an environment.
Our algorithm performs better in a visually complex 3D robotic environment and a 2D environment with compositional structure than the state-of-the-art model-free actor-critic algorithm.
arXiv Detail & Related papers (2023-10-26T06:05:12Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
We introduce a method that explicitly optimize the constraint that each object in a scene should be associated with a distinct slot.
By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance.
Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.
arXiv Detail & Related papers (2023-06-03T21:49:06Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - Object Pursuit: Building a Space of Objects via Discriminative Weight
Generation [23.85039747700698]
We propose a framework to continuously learn object-centric representations for visual learning and understanding.
We leverage interactions to sample diverse variations of an object and the corresponding training signals while learning the object-centric representations.
We perform an extensive study of the key features of the proposed framework and analyze the characteristics of the learned representations.
arXiv Detail & Related papers (2021-12-15T08:25:30Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
We develop a framework that exploits the sensitivity of modern machine learning algorithms to input perturbations in order to design "robust objects"
We demonstrate the efficacy of the framework on a wide variety of vision-based tasks ranging from standard benchmarks to (in-simulation) robotics.
arXiv Detail & Related papers (2020-12-22T18:26:07Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.