CUDA-Accelerated Soft Robot Neural Evolution with Large Language Model Supervision
- URL: http://arxiv.org/abs/2405.00698v1
- Date: Fri, 12 Apr 2024 19:24:06 GMT
- Title: CUDA-Accelerated Soft Robot Neural Evolution with Large Language Model Supervision
- Authors: Lechen Zhang,
- Abstract summary: This paper addresses the challenge of co-designing morphology and control in soft robots via a novel neural network evolution approach.
We propose an innovative method to implicitly dual-encode soft robots, thus facilitating the simultaneous design of morphology and control.
We also introduce the large language model to serve as the control center during the evolutionary process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of co-designing morphology and control in soft robots via a novel neural network evolution approach. We propose an innovative method to implicitly dual-encode soft robots, thus facilitating the simultaneous design of morphology and control. Additionally, we introduce the large language model to serve as the control center during the evolutionary process. This advancement considerably optimizes the evolution speed compared to traditional soft-bodied robot co-design methods. Further complementing our work is the implementation of Gaussian positional encoding - an approach that augments the neural network's comprehension of robot morphology. Our paper offers a new perspective on soft robot design, illustrating substantial improvements in efficiency and comprehension during the design and evolutionary process.
Related papers
- RoboMorph: Evolving Robot Morphology using Large Language Models [0.5812095716568273]
We introduce RoboMorph, an automated approach for generating and optimizing modular robot designs.
By integrating automatic prompt design and a reinforcement learning based control algorithm, RoboMorph iteratively improves robot designs through feedback loops.
arXiv Detail & Related papers (2024-07-11T16:05:56Z) - DittoGym: Learning to Control Soft Shape-Shifting Robots [30.287452037945542]
We explore the novel reconfigurable robots, defined as robots that can change their morphology within their lifetime.
We formalize control of reconfigurable soft robots as a high-dimensional reinforcement learning (RL) problem.
We introduce DittoGym, a comprehensive RL benchmark for reconfigurable soft robots that require fine-grained morphology changes.
arXiv Detail & Related papers (2024-01-24T05:03:05Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Modular Controllers Facilitate the Co-Optimization of Morphology and
Control in Soft Robots [0.5076419064097734]
We show that modular controllers are more robust to changes to a robot's body plan.
Increased transferability of modular controllers to similar body plans enables more effective brain-body co-optimization of soft robots.
arXiv Detail & Related papers (2023-06-12T16:36:46Z) - SoftZoo: A Soft Robot Co-design Benchmark For Locomotion In Diverse
Environments [111.91255476270526]
We introduce SoftZoo, a soft robot co-design platform for locomotion in diverse environments.
SoftZoo supports an extensive, naturally-inspired material set, including the ability to simulate environments such as flat ground, desert, wetland, clay, ice, snow, shallow water, and ocean.
It provides a variety of tasks relevant for soft robotics, including fast locomotion, agile turning, and path following, as well as differentiable design representations for morphology and control.
arXiv Detail & Related papers (2023-03-16T17:59:50Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control.
Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies.
We propose a hierarchical architecture to better model this dependency via contextual modulation.
arXiv Detail & Related papers (2023-02-22T00:04:12Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots [29.02903745467536]
We propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots.
Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation.
We develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.
arXiv Detail & Related papers (2022-01-24T18:39:22Z) - EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation using
Accelerated Neuroevolution with Weight Transfer [82.28607779710066]
We explore the application of neuroevolution, a form of neural architecture search inspired by biological evolution, in the design of 2D human pose networks.
Our method produces network designs that are more efficient and more accurate than state-of-the-art hand-designed networks.
arXiv Detail & Related papers (2020-11-17T05:56:16Z) - Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning [65.88200578485316]
We present a new meta-learning method that allows robots to quickly adapt to changes in dynamics.
Our method significantly improves adaptation to changes in dynamics in high noise settings.
We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics.
arXiv Detail & Related papers (2020-03-02T22:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.