HMAMP: Hypervolume-Driven Multi-Objective Antimicrobial Peptides Design
- URL: http://arxiv.org/abs/2405.00753v1
- Date: Wed, 1 May 2024 07:17:59 GMT
- Title: HMAMP: Hypervolume-Driven Multi-Objective Antimicrobial Peptides Design
- Authors: Li Wang, Yiping Li, Xiangzheng Fu, Xiucai Ye, Junfeng Shi, Gary G. Yen, Xiangxiang Zeng,
- Abstract summary: This paper introduces a paradigm shift by considering multiple attributes in Antimicrobial peptides (AMPs) design.
By synergizing reinforcement learning and a descent algorithm rooted in the hypervolume of AMP concept, HMAMP effectively expands exploration space and mitigates the issue of pattern collapse.
A detailed analysis of the helical structures and molecular dynamics simulations for ten potential candidate AMPs validates the superiority of HMAMP in the realm of multi-objective AMP design.
- Score: 11.891046340221735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Antimicrobial peptides (AMPs) have exhibited unprecedented potential as biomaterials in combating multidrug-resistant bacteria. Despite the increasing adoption of artificial intelligence for novel AMP design, challenges pertaining to conflicting attributes such as activity, hemolysis, and toxicity have significantly impeded the progress of researchers. This paper introduces a paradigm shift by considering multiple attributes in AMP design. Presented herein is a novel approach termed Hypervolume-driven Multi-objective Antimicrobial Peptide Design (HMAMP), which prioritizes the simultaneous optimization of multiple attributes of AMPs. By synergizing reinforcement learning and a gradient descent algorithm rooted in the hypervolume maximization concept, HMAMP effectively expands exploration space and mitigates the issue of pattern collapse. This method generates a wide array of prospective AMP candidates that strike a balance among diverse attributes. Furthermore, we pinpoint knee points along the Pareto front of these candidate AMPs. Empirical results across five benchmark models substantiate that HMAMP-designed AMPs exhibit competitive performance and heightened diversity. A detailed analysis of the helical structures and molecular dynamics simulations for ten potential candidate AMPs validates the superiority of HMAMP in the realm of multi-objective AMP design. The ability of HMAMP to systematically craft AMPs considering multiple attributes marks a pioneering milestone, establishing a universal computational framework for the multi-objective design of AMPs.
Related papers
- SGAC: A Graph Neural Network Framework for Imbalanced and Structure-Aware AMP Classification [7.044114650607729]
Classifying antimicrobial peptides(AMPs) from the vast array of peptides mined from metagenomic sequencing data is a significant approach to addressing the issue of antibiotic resistance.
Current AMP classification methods, primarily relying on sequence-based data, neglect the spatial structure of peptides, thereby limiting the accurate classification of AMPs.
arXiv Detail & Related papers (2024-12-20T17:17:57Z) - MoFormer: Multi-objective Antimicrobial Peptide Generation Based on Conditional Transformer Joint Multi-modal Fusion Descriptor [15.98003148948758]
We establish a multi-objective AMP synthesis pipeline (MoFormer) for the simultaneous optimization of multi-attributes of AMPs.
MoFormer improves the desired attributes of AMP sequences in a highly structured latent space, guided by conditional constraints and fine-grained multi-descriptor.
We show that MoFormer outperforms existing methods in the generation task of enhanced antimicrobial activity and minimal hemolysis.
arXiv Detail & Related papers (2024-06-03T07:17:18Z) - AMPCliff: quantitative definition and benchmarking of activity cliffs in antimicrobial peptides [4.826446796830595]
This study introduces a quantitative definition and benchmarking framework AMPCliff for the AC phenomenon in antimicrobial peptides (AMPs) composed by canonical amino acids.
AMPCliff quantifies the activities of AMPs by the MIC, and defines 0.9 as the minimum threshold for the normalized BLOSUM62 similarity score between a pair of aligned peptides with at least two-fold MIC changes.
Our analysis reveals that these models are capable of detecting AMP AC events and the pre-trained protein language model ESM2 demonstrates superior performance across the evaluations.
arXiv Detail & Related papers (2024-04-15T12:40:12Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Graph-Based Active Machine Learning Method for Diverse and Novel
Antimicrobial Peptides Generation and Selection [57.131117785001194]
Large-scale screening of new AMP candidates is expensive, time-consuming, and now affordable in developing countries.
We propose a novel active machine learning-based framework that statistically minimizes the number of wet-lab experiments needed to design new AMPs.
arXiv Detail & Related papers (2022-09-18T14:30:48Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
We train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection.
We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data.
Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results.
arXiv Detail & Related papers (2022-09-13T18:37:27Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - HMD-AMP: Protein Language-Powered Hierarchical Multi-label Deep Forest
for Annotating Antimicrobial Peptides [5.61222966894307]
We build a diverse and comprehensive multi-label protein sequence database by collecting and cleaning amino acids from various AMP databases.
We develop an end-to-end hierarchical multi-label deep forest framework, HMD-AMP, to annotate AMP comprehensively.
After identifying an AMP, it further predicts what targets the AMP can effectively kill from eleven available classes.
arXiv Detail & Related papers (2021-11-11T02:10:07Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.