LOTUS: Improving Transformer Efficiency with Sparsity Pruning and Data Lottery Tickets
- URL: http://arxiv.org/abs/2405.00906v1
- Date: Wed, 1 May 2024 23:30:12 GMT
- Title: LOTUS: Improving Transformer Efficiency with Sparsity Pruning and Data Lottery Tickets
- Authors: Ojasw Upadhyay,
- Abstract summary: Vision transformers have revolutionized computer vision, but their computational demands present challenges for training and deployment.
This paper introduces LOTUS, a novel method that leverages data lottery ticket selection and sparsity pruning to accelerate vision transformer training while maintaining accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision transformers have revolutionized computer vision, but their computational demands present challenges for training and deployment. This paper introduces LOTUS (LOttery Transformers with Ultra Sparsity), a novel method that leverages data lottery ticket selection and sparsity pruning to accelerate vision transformer training while maintaining accuracy. Our approach focuses on identifying and utilizing the most informative data subsets and eliminating redundant model parameters to optimize the training process. Through extensive experiments, we demonstrate the effectiveness of LOTUS in achieving rapid convergence and high accuracy with significantly reduced computational requirements. This work highlights the potential of combining data selection and sparsity techniques for efficient vision transformer training, opening doors for further research and development in this area.
Related papers
- Optimizing Vision Transformers with Data-Free Knowledge Transfer [8.323741354066474]
Vision transformers (ViTs) have excelled in various computer vision tasks due to their superior ability to capture long-distance dependencies.
We propose compressing large ViT models using Knowledge Distillation (KD), which is implemented data-free to circumvent limitations related to data availability.
arXiv Detail & Related papers (2024-08-12T07:03:35Z) - Early Transformers: A study on Efficient Training of Transformer Models through Early-Bird Lottery Tickets [0.0]
This paper investigates the applicability of the early-bird ticket hypothesis to optimize the training efficiency of Transformer models.
We propose a methodology that combines iterative pruning, masked distance calculation, and selective retraining to identify early-bird tickets.
arXiv Detail & Related papers (2024-05-02T23:03:45Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - A Survey on Efficient Training of Transformers [72.31868024970674]
This survey provides the first systematic overview of the efficient training of Transformers.
We analyze and compare methods that save computation and memory costs for intermediate tensors during training, together with techniques on hardware/algorithm co-design.
arXiv Detail & Related papers (2023-02-02T13:58:18Z) - AdaViT: Adaptive Vision Transformers for Efficient Image Recognition [78.07924262215181]
We introduce AdaViT, an adaptive framework that learns to derive usage policies on which patches, self-attention heads and transformer blocks to use.
Our method obtains more than 2x improvement on efficiency compared to state-of-the-art vision transformers with only 0.8% drop of accuracy.
arXiv Detail & Related papers (2021-11-30T18:57:02Z) - Efficient Vision Transformers via Fine-Grained Manifold Distillation [96.50513363752836]
Vision transformer architectures have shown extraordinary performance on many computer vision tasks.
Although the network performance is boosted, transformers are often required more computational resources.
We propose to excavate useful information from the teacher transformer through the relationship between images and the divided patches.
arXiv Detail & Related papers (2021-07-03T08:28:34Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
We study the relationship between shortcuts and feature diversity in vision transformer models.
We present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts.
Experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-06-30T09:48:30Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.