Hyperspectral Band Selection based on Generalized 3DTV and Tensor CUR Decomposition
- URL: http://arxiv.org/abs/2405.00951v1
- Date: Thu, 2 May 2024 02:23:38 GMT
- Title: Hyperspectral Band Selection based on Generalized 3DTV and Tensor CUR Decomposition
- Authors: Katherine Henneberger, Jing Qin,
- Abstract summary: Hyperspectral Imaging serves as an important technique in remote sensing.
High dimensionality and data volume pose significant computational challenges.
We propose a novel hyperspectral band selection model by decomposing the data into a low-rank and smooth component and a sparse one.
- Score: 8.812294191190896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral Imaging (HSI) serves as an important technique in remote sensing. However, high dimensionality and data volume typically pose significant computational challenges. Band selection is essential for reducing spectral redundancy in hyperspectral imagery while retaining intrinsic critical information. In this work, we propose a novel hyperspectral band selection model by decomposing the data into a low-rank and smooth component and a sparse one. In particular, we develop a generalized 3D total variation (G3DTV) by applying the $\ell_1^p$-norm to derivatives to preserve spatial-spectral smoothness. By employing the alternating direction method of multipliers (ADMM), we derive an efficient algorithm, where the tensor low-rankness is implied by the tensor CUR decomposition. We demonstrate the effectiveness of the proposed approach through comparisons with various other state-of-the-art band selection techniques using two benchmark real-world datasets. In addition, we provide practical guidelines for parameter selection in both noise-free and noisy scenarios.
Related papers
- Geometric Algebra Planes: Convex Implicit Neural Volumes [70.12234371845445]
We show that GA-Planes is equivalent to a sparse low-rank factor plus low-resolution matrix.
We also show that GA-Planes can be adapted for many existing representations.
arXiv Detail & Related papers (2024-11-20T18:21:58Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
We introduce Multi-View Stereo (SD-MVS) to tackle challenges in 3D reconstruction of textureless areas.
We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes.
We propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths.
arXiv Detail & Related papers (2024-01-12T05:25:57Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - A distribution-dependent Mumford-Shah model for unsupervised
hyperspectral image segmentation [3.2116198597240846]
We present a novel unsupervised hyperspectral segmentation framework.
It starts with a denoising and dimensionality reduction step by the well-established Minimum Noise Fraction (MNF) transform.
We equipped the MS functional with a novel robust distribution-dependent indicator function designed to handle the challenges of hyperspectral data.
arXiv Detail & Related papers (2022-03-28T19:57:14Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - 2D+3D facial expression recognition via embedded tensor manifold
regularization [16.98176664818354]
A novel approach via embedded tensor manifold regularization for 2D+3D facial expression recognition (FERETMR) is proposed.
We establish the first-order optimality condition in terms of stationary points, and then design a block coordinate descent (BCD) algorithm with convergence analysis.
Numerical results on BU-3DFE database and Bosphorus databases demonstrate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2022-01-29T06:11:00Z) - Range Conditioned Dilated Convolutions for Scale Invariant 3D Object
Detection [41.59388513615775]
This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images.
Benefiting from the compactness of range images, 2D convolutions can efficiently process dense LiDAR data of a scene.
arXiv Detail & Related papers (2020-05-20T09:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.