Efficient Data-driven Scene Simulation using Robotic Surgery Videos via Physics-embedded 3D Gaussians
- URL: http://arxiv.org/abs/2405.00956v2
- Date: Mon, 20 May 2024 11:35:22 GMT
- Title: Efficient Data-driven Scene Simulation using Robotic Surgery Videos via Physics-embedded 3D Gaussians
- Authors: Zhenya Yang, Kai Chen, Yonghao Long, Qi Dou,
- Abstract summary: We introduce 3D Gaussian as a learnable representation for surgical scene, which is learned from stereo endoscopic video.
We apply the Material Point Method, which is integrated with physical properties, to the 3D Gaussians to achieve realistic scene deformations.
Results show that it can reconstruct and simulate surgical scenes from endoscopic videos efficiently-taking only a few minutes to reconstruct the surgical scene.
- Score: 19.590481146949685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical scene simulation plays a crucial role in surgical education and simulator-based robot learning. Traditional approaches for creating these environments with surgical scene involve a labor-intensive process where designers hand-craft tissues models with textures and geometries for soft body simulations. This manual approach is not only time-consuming but also limited in the scalability and realism. In contrast, data-driven simulation offers a compelling alternative. It has the potential to automatically reconstruct 3D surgical scenes from real-world surgical video data, followed by the application of soft body physics. This area, however, is relatively uncharted. In our research, we introduce 3D Gaussian as a learnable representation for surgical scene, which is learned from stereo endoscopic video. To prevent over-fitting and ensure the geometrical correctness of these scenes, we incorporate depth supervision and anisotropy regularization into the Gaussian learning process. Furthermore, we apply the Material Point Method, which is integrated with physical properties, to the 3D Gaussians to achieve realistic scene deformations. Our method was evaluated on our collected in-house and public surgical videos datasets. Results show that it can reconstruct and simulate surgical scenes from endoscopic videos efficiently-taking only a few minutes to reconstruct the surgical scene-and produce both visually and physically plausible deformations at a speed approaching real-time. The results demonstrate great potential of our proposed method to enhance the efficiency and variety of simulations available for surgical education and robot learning.
Related papers
- A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery [8.909938295090827]
NeRF-based techniques have recently garnered attention for the ability to reconstruct scenes implicitly.
On the other hand, 3D-GS represents scenes explicitly using 3D Gaussians and projects them onto a 2D plane as a replacement for the complex volume rendering in NeRF.
This work explores and reviews state-of-the-art (SOTA) approaches, discussing their innovations and implementation principles.
arXiv Detail & Related papers (2024-08-08T12:51:23Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
Dynamic reconstruction of deformable tissues in endoscopic video is a key technology for robot-assisted surgery.
NeRFs struggle to capture intricate details of objects in the scene.
Our network outperforms existing method on many aspects, including rendering quality, rendering speed and GPU usage.
arXiv Detail & Related papers (2024-07-06T09:31:30Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
We present a reconfigurable data glove design to capture different modes of human hand-object interactions.
The glove operates in three modes for various downstream tasks with distinct features.
We evaluate the system's three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR, and (iii) producing realistic simulation effects of various tool uses.
arXiv Detail & Related papers (2023-01-14T05:35:50Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in
Robotic Surgery [18.150476919815382]
Reconstruction of the soft tissues in robotic surgery from endoscopic stereo videos is important for many applications.
Previous works on this task mainly rely on SLAM-based approaches, which struggle to handle complex surgical scenes.
Inspired by recent progress in neural rendering, we present a novel framework for deformable tissue reconstruction.
arXiv Detail & Related papers (2022-06-30T13:06:27Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
We present an efficient reconstruction pipeline for highly dynamic surgical scenes that runs at 28 fps.
Specifically, we design a transformer-based stereoscopic depth perception for efficient depth estimation.
We evaluate the proposed pipeline on two datasets, the public Hamlyn Centre Endoscopic Video dataset and our in-house DaVinci robotic surgery dataset.
arXiv Detail & Related papers (2021-07-01T05:57:41Z) - Recurrent and Spiking Modeling of Sparse Surgical Kinematics [0.8458020117487898]
A growing number of studies have used machine learning to analyze video and kinematic data captured from surgical robots.
In this study, we explore the possibility of using only kinematic data to predict surgeons of similar skill levels.
We report that it is possible to identify surgical fellows receiving near perfect scores in the simulation exercises based on their motion characteristics alone.
arXiv Detail & Related papers (2020-05-12T15:41:45Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.