A multidimensional approach to quantum state tomography of photoelectron wavepackets
- URL: http://arxiv.org/abs/2405.00968v2
- Date: Thu, 11 Jul 2024 18:35:05 GMT
- Title: A multidimensional approach to quantum state tomography of photoelectron wavepackets
- Authors: Hugo Laurell, Jorge Baños-Gutiérrez, Anne L'Huillier, David Busto, Daniel Finkelstein-Shapiro,
- Abstract summary: We propose a new and more efficient protocol that is able to reconstruct the continuous variable density matrix of a photoelectron in a single time delay scan.
It is based on measuring the coherences of a photoelectron absorption of an XUV pulse using a broadband infrared (IR) probe that is scanned in time and a narrowband IR reference that is temporally fixed to the XUV pulse.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing interest in reconstructing the density matrix of photoelectron wavepackets, in particular in complex systems where decoherence can be introduced either by a partial measurement of the system or through coupling with a stochastic environment. To this end, several methods to reconstruct the density matrix, quantum state tomography protocols, have been developed and tested on photoelectrons ejected from noble gases following absorption of extreme ultraviolet (XUV) photons from attosecond pulses. It remains a challenge to obtain model-free, single scan protocols that can reconstruct the density matrix with high fidelities. Current methods require extensive measurements or involve complex fitting of the signal. Efficient single-scan reconstructions would be of great help to increase the number of systems that can be studied. We propose a new and more efficient protocol that is able to reconstruct the continuous variable density matrix of a photoelectron in a single time delay scan. It is based on measuring the coherences of a photoelectron created by absorption of an XUV pulse using a broadband infrared (IR) probe that is scanned in time and a narrowband IR reference that is temporally fixed to the XUV pulse. We illustrate its performance for a Fano resonance in He as well as mixed states in Ar arising from spin-orbit splitting. We show that the protocol results in excellent fidelities and near-perfect estimation of the purity.
Related papers
- Wigner-function formalism for the detection of single microwave pulses in a resonator-coupled double quantum dot [0.0]
We theoretically analyze the photodetection of single microwave pulses.
We find a trade-off between detecting the time and the frequency of the incoming photons in agreement with the time-energy uncertainty relation.
Our findings give insight into the time-dependent properties of microwave photons interacting with electrons in a DQD-resonator hybrid system.
arXiv Detail & Related papers (2024-10-18T08:35:42Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Practically Enhanced Hyperentanglement Concentration for
Polarization-spatial Hyperentangled Bell States with Linear Optics and Common
Single-photon Detectors [0.0]
We propose heralded hyperentanglement concentration protocols (hyper-ECPs) to concentrate an unknown partially less polarization-spatial hyperentangled Bell state with available linear optics and common single-photon detectors.
Our linear optical architectures allow certain states, where concentration fails, to be recyclable, and a trick makes the success of our schemes higher than those of previous linear optical hyper-ECPs.
arXiv Detail & Related papers (2023-04-01T02:23:17Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Submegahertz spectral width photon pair source based on fused silica
microspheres [0.0]
High efficiency, sub-MHz bandwidth photon pair generators will enable the field of quantum technology to transition from laboratory demonstrations to transformational applications involving information transfer from photons to atoms.
We use an ultra-high quality factor (Q) fused silica microsphere resonant cavity to form a photon pair generator.
We demonstrate the extraction of the spectral profile of a single peak in the single-photon frequency comb from a measurement of the signal-idler time of emission distribution.
arXiv Detail & Related papers (2021-10-25T23:56:19Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Deterministically fabricated strain-tunable quantum dot single-photon
sources emitting in the telecom O-band [0.0]
We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network.
A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding.
arXiv Detail & Related papers (2020-09-26T09:03:50Z) - Data-Driven Discovery of Molecular Photoswitches with Multioutput
Gaussian Processes [51.17758371472664]
Photoswitchable molecules display two or more isomeric forms that may be accessed using light.
We present a data-driven discovery pipeline for molecular photoswitches underpinned by dataset curation and multitask learning.
We validate our proposed approach experimentally by screening a library of commercially available photoswitchable molecules.
arXiv Detail & Related papers (2020-06-28T20:59:03Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Phase resolved joint spectra tomography of a ring resonator photon pair
source using a silicon photonic chip [0.0]
This paper presents the first measurement of the Joint Spectral Amplitude of a micro-ring resonator source.
The circuit coherently excites the ring and a reference waveguide, and the interferogram formed by their fields is used to map the ring.
This tool complements the traditionally bulky and sophisticated methods implemented so far, simultaneously minimizing the set of required resources.
arXiv Detail & Related papers (2020-01-09T09:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.