Efficient and Adaptive Posterior Sampling Algorithms for Bandits
- URL: http://arxiv.org/abs/2405.01010v1
- Date: Thu, 2 May 2024 05:24:28 GMT
- Title: Efficient and Adaptive Posterior Sampling Algorithms for Bandits
- Authors: Bingshan Hu, Zhiming Huang, Tianyue H. Zhang, Mathias Lécuyer, Nidhi Hegde,
- Abstract summary: We study Thompson Sampling-based algorithms for bandits with bounded rewards.
We propose two parameterized Thompson Sampling-based algorithms.
Both algorithms achieve $O left(Klnalpha+1(T)/Delta right)$ regret bound, where $K$ is the number of arms, $T$ is the finite learning horizon, and $Delta$ denotes the single round performance loss when pulling a sub-optimal arm.
- Score: 5.050520326139362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study Thompson Sampling-based algorithms for stochastic bandits with bounded rewards. As the existing problem-dependent regret bound for Thompson Sampling with Gaussian priors [Agrawal and Goyal, 2017] is vacuous when $T \le 288 e^{64}$, we derive a more practical bound that tightens the coefficient of the leading term %from $288 e^{64}$ to $1270$. Additionally, motivated by large-scale real-world applications that require scalability, adaptive computational resource allocation, and a balance in utility and computation, we propose two parameterized Thompson Sampling-based algorithms: Thompson Sampling with Model Aggregation (TS-MA-$\alpha$) and Thompson Sampling with Timestamp Duelling (TS-TD-$\alpha$), where $\alpha \in [0,1]$ controls the trade-off between utility and computation. Both algorithms achieve $O \left(K\ln^{\alpha+1}(T)/\Delta \right)$ regret bound, where $K$ is the number of arms, $T$ is the finite learning horizon, and $\Delta$ denotes the single round performance loss when pulling a sub-optimal arm.
Related papers
- Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct.
Our main contribution is in designing a novel learning algorithm for the agnostic $(varepsilon,delta)$PAC version of the problem.
arXiv Detail & Related papers (2024-06-18T08:54:04Z) - Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
We study sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression.
For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees.
At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
arXiv Detail & Related papers (2024-03-15T15:51:27Z) - Best-of-Both-Worlds Algorithms for Linear Contextual Bandits [11.94312915280916]
We study best-of-both-worlds algorithms for $K$-armed linear contextual bandits.
Our algorithms deliver near-optimal regret bounds in both the adversarial and adversarial regimes.
arXiv Detail & Related papers (2023-12-24T08:27:30Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Computationally Efficient Horizon-Free Reinforcement Learning for Linear
Mixture MDPs [111.75736569611159]
We propose the first computationally efficient horizon-free algorithm for linear mixture MDPs.
Our algorithm adapts a weighted least square estimator for the unknown transitional dynamic.
This also improves upon the best-known algorithms in this setting when $sigma_k2$'s are known.
arXiv Detail & Related papers (2022-05-23T17:59:18Z) - On the complexity of All $\varepsilon$-Best Arms Identification [2.1485350418225244]
We consider the problem of identifying all the $varepsilon$-optimal arms in a finite multi-armed bandit with Gaussian rewards.
We propose a Track-and-Stop algorithm that identifies the set of $varepsilon$-good arms w.h.p and enjoys optimality (when $delta$ goes to zero) in terms of the expected sample complexity.
arXiv Detail & Related papers (2022-02-13T10:54:52Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
Decision Processes [91.38793800392108]
We study reinforcement learning with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model.
We propose a new, computationally efficient algorithm with linear function approximation named $textUCRL-VTR+$ for the aforementioned linear mixture MDPs.
To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
arXiv Detail & Related papers (2020-12-15T18:56:46Z) - An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
Gradient Descent and Thompson Sampling [83.48992319018147]
We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward.
A natural way to resolve this problem is to apply online gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant.
In this work, we show that online SGD can be applied to the generalized linear bandit problem.
The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information, achieves $tildeO(sqrtT)$ regret with the total time complexity that
arXiv Detail & Related papers (2020-06-07T01:12:39Z) - MOTS: Minimax Optimal Thompson Sampling [89.2370817955411]
It has remained an open problem whether Thompson sampling can match the minimax lower bound $Omega(sqrtKT)$ for $K$-armed bandit problems.
We propose a variant of Thompson sampling called MOTS that adaptively clips the sampling instance of the chosen arm at each time step.
We prove that this simple variant of Thompson sampling achieves the minimax optimal regret bound $O(sqrtKT)$ for finite time horizon $T$, as well as the optimal regret bound for Gaussian rewards when $T$ approaches infinity.
arXiv Detail & Related papers (2020-03-03T21:24:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.