Non-clairvoyant Scheduling with Partial Predictions
- URL: http://arxiv.org/abs/2405.01013v2
- Date: Sun, 4 Aug 2024 18:09:39 GMT
- Title: Non-clairvoyant Scheduling with Partial Predictions
- Authors: Ziyad Benomar, Vianney Perchet,
- Abstract summary: We present a learning-augmented algorithm satisfying the robustness, consistency, and smoothness criteria.
We also present a novel tradeoff between consistency and smoothness inherent in the scenario with a restricted number of predictions.
- Score: 17.387787159892287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-clairvoyant scheduling problem has gained new interest within learning-augmented algorithms, where the decision-maker is equipped with predictions without any quality guarantees. In practical settings, access to predictions may be reduced to specific instances, due to cost or data limitations. Our investigation focuses on scenarios where predictions for only $B$ job sizes out of $n$ are available to the algorithm. We first establish near-optimal lower bounds and algorithms in the case of perfect predictions. Subsequently, we present a learning-augmented algorithm satisfying the robustness, consistency, and smoothness criteria, and revealing a novel tradeoff between consistency and smoothness inherent in the scenario with a restricted number of predictions.
Related papers
- Fair Secretaries with Unfair Predictions [12.756552522270198]
We show that an algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $maxOmega (1), 1 - O(epsilon)$ times the optimal value, where $epsilon$ is the prediction error.
Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results.
arXiv Detail & Related papers (2024-11-15T00:23:59Z) - Sorting and Hypergraph Orientation under Uncertainty with Predictions [0.45880283710344055]
We study learning-augmented algorithms for sorting and hypergraph orientation under uncertainty.
Our algorithms provide improved performance guarantees for accurate predictions while maintaining worst-case guarantees that are best possible without predictions.
arXiv Detail & Related papers (2023-05-16T07:52:08Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
We consider non-clairvoyant scheduling with online precedence constraints.
An algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed.
arXiv Detail & Related papers (2023-01-30T13:17:15Z) - Algorithms with Prediction Portfolios [23.703372221079306]
We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling.
For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
arXiv Detail & Related papers (2022-10-22T12:58:07Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
We study the fundamental online $k$-server problem in a learning-augmented setting.
We show that our algorithm achieves for any k an almost optimal consistency-robustness tradeoff.
arXiv Detail & Related papers (2021-03-02T11:04:33Z) - Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online
Algorithms [85.97516436641533]
We study the problem of improving the performance of online algorithms by incorporating machine-learned predictions.
The goal is to design algorithms that are both consistent and robust.
We provide the first set of non-trivial lower bounds for competitive analysis using machine-learned predictions.
arXiv Detail & Related papers (2020-10-22T04:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.