LOQA: Learning with Opponent Q-Learning Awareness
- URL: http://arxiv.org/abs/2405.01035v1
- Date: Thu, 2 May 2024 06:33:01 GMT
- Title: LOQA: Learning with Opponent Q-Learning Awareness
- Authors: Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, Aaron Courville,
- Abstract summary: We introduce Learning with Opponent Q-Learning Awareness (LOQA), a decentralized reinforcement learning algorithm tailored to optimize an agent's individual utility.
LOQA achieves state-of-the-art performance in benchmark scenarios such as the Iterated Prisoner's Dilemma and the Coin Game.
- Score: 1.1666234644810896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In various real-world scenarios, interactions among agents often resemble the dynamics of general-sum games, where each agent strives to optimize its own utility. Despite the ubiquitous relevance of such settings, decentralized machine learning algorithms have struggled to find equilibria that maximize individual utility while preserving social welfare. In this paper we introduce Learning with Opponent Q-Learning Awareness (LOQA), a novel, decentralized reinforcement learning algorithm tailored to optimizing an agent's individual utility while fostering cooperation among adversaries in partially competitive environments. LOQA assumes the opponent samples actions proportionally to their action-value function Q. Experimental results demonstrate the effectiveness of LOQA at achieving state-of-the-art performance in benchmark scenarios such as the Iterated Prisoner's Dilemma and the Coin Game. LOQA achieves these outcomes with a significantly reduced computational footprint, making it a promising approach for practical multi-agent applications.
Related papers
- Mitigating Relative Over-Generalization in Multi-Agent Reinforcement Learning [11.988291170853806]
We introduce MaxMax Q-Learning (MMQ), which employs an iterative process of sampling and evaluating potential next states.
This approach refines approximations of ideal state transitions, aligning more closely with the optimal joint policy of collaborating agents.
Our results demonstrate that MMQ frequently outperforms existing baselines, exhibiting enhanced convergence and sample efficiency.
arXiv Detail & Related papers (2024-11-17T15:00:39Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - Inverse Factorized Q-Learning for Cooperative Multi-agent Imitation
Learning [13.060023718506917]
imitation learning (IL) is a problem of learning to mimic expert behaviors from demonstrations in cooperative multi-agent systems.
We introduce a novel multi-agent IL algorithm designed to address these challenges.
Our approach enables the centralized learning by leveraging mixing networks to aggregate decentralized Q functions.
arXiv Detail & Related papers (2023-10-10T17:11:20Z) - Credit-cognisant reinforcement learning for multi-agent cooperation [0.0]
We introduce the concept of credit-cognisant rewards, which allows an agent to perceive the effect its actions had on the environment as well as on its co-agents.
We show that by manipulating these experiences and constructing the reward contained within them to include the rewards received by all the agents within the same action sequence, we are able to improve significantly on the performance of independent deep Q-learning.
arXiv Detail & Related papers (2022-11-18T09:00:25Z) - Addressing the issue of stochastic environments and local
decision-making in multi-objective reinforcement learning [0.0]
Multi-objective reinforcement learning (MORL) is a relatively new field which builds on conventional Reinforcement Learning (RL)
This thesis focuses on what factors influence the frequency with which value-based MORL Q-learning algorithms learn the optimal policy for an environment.
arXiv Detail & Related papers (2022-11-16T04:56:42Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - On Information Asymmetry in Competitive Multi-Agent Reinforcement
Learning: Convergence and Optimality [78.76529463321374]
We study the system of interacting non-cooperative two Q-learning agents.
We show that this information asymmetry can lead to a stable outcome of population learning.
arXiv Detail & Related papers (2020-10-21T11:19:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.