Mining REST APIs for Potential Mass Assignment Vulnerabilities
- URL: http://arxiv.org/abs/2405.01111v2
- Date: Sat, 4 May 2024 15:36:16 GMT
- Title: Mining REST APIs for Potential Mass Assignment Vulnerabilities
- Authors: Arash Mazidi, Davide Corradini, Mohammad Ghafari,
- Abstract summary: We propose a lightweight approach to mine the REST API specifications and identify operations and attributes that are prone to mass assignment.
We conducted a preliminary study on 100 APIs and found 25 prone to this vulnerability.
We confirmed nine real vulnerable operations in six APIs.
- Score: 1.0377683220196872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: REST APIs have a pivotal role in accessing protected resources. Despite the availability of security testing tools, mass assignment vulnerabilities are common in REST APIs, leading to unauthorized manipulation of sensitive data. We propose a lightweight approach to mine the REST API specifications and identify operations and attributes that are prone to mass assignment. We conducted a preliminary study on 100 APIs and found 25 prone to this vulnerability. We confirmed nine real vulnerable operations in six APIs.
Related papers
- Rethinking Broken Object Level Authorization Attacks Under Zero Trust Principle [24.549812554065475]
Broken Object Level Authorization (BOLA) is the top vulnerability in the API Security Top 10.<n>We propose BOLAZ, a defense framework grounded in zero trust principles.<n>We validate BOLAZ through empirical research on 10 GitHub projects.
arXiv Detail & Related papers (2025-07-03T04:40:14Z) - Test Amplification for REST APIs via Single and Multi-Agent LLM Systems [1.6499388997661122]
We show how single-agent and multi-agent LLM systems can amplify a REST API test suite.
Our evaluation demonstrates increased API coverage, identification of numerous bugs in the API under test, and insights into the computational cost and energy consumption of both approaches.
arXiv Detail & Related papers (2025-04-10T20:19:50Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
We present LlamaRestTest, a novel approach that employs two custom Large Language Models (LLMs) to generate realistic test inputs.
We evaluate it against several state-of-the-art REST API testing tools, including RESTGPT, a GPT-powered specification-enhancement tool.
Our study shows that small language models can perform as well as, or better than, large language models in REST API testing.
arXiv Detail & Related papers (2025-01-15T05:51:20Z) - APIRL: Deep Reinforcement Learning for REST API Fuzzing [3.053989095162017]
APIRL is a fully automated deep reinforcement learning tool for testing REST APIs.
We show APIRL can find significantly more bugs than the state-of-the-art in real world REST APIs.
arXiv Detail & Related papers (2024-12-20T15:40:51Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoder is a training-free framework that empowers large language models to invoke unseen APIs in code solution.
We show that ExploraCoder significantly improves performance for models lacking prior API knowledge, achieving an absolute increase of 11.24% over niave RAG approaches and 14.07% over pretraining methods in pass@10.
arXiv Detail & Related papers (2024-12-06T19:00:15Z) - A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
We present AutoRestTest, the first black-box framework to adopt a dependency-embedded multi-agent approach for REST API testing.
We integrate Multi-Agent Reinforcement Learning (MARL) with a Semantic Property Dependency Graph (SPDG) and Large Language Models (LLMs)
Our approach treats REST API testing as a separable problem, where four agents -- API, dependency, parameter, and value -- collaborate to optimize API exploration.
arXiv Detail & Related papers (2024-11-11T16:20:27Z) - Reinforcement Learning-Based REST API Testing with Multi-Coverage [4.127886193201882]
MUCOREST is a novel Reinforcement Learning (RL)-based API testing approach that leverages Q-learning to maximize code coverage and output coverage.
MUCOREST significantly outperforms state-of-the-art API testing approaches by 11.6-261.1% in the number of discovered API bugs.
arXiv Detail & Related papers (2024-10-20T14:20:23Z) - DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning [5.756036843502232]
This paper introduces DeepREST, a novel black-box approach for automatically testing REST APIs.
It leverages deep reinforcement learning to uncover implicit API constraints, that is, constraints hidden from API documentation.
Our empirical validation suggests that the proposed approach is very effective in achieving high test coverage and fault detection.
arXiv Detail & Related papers (2024-08-16T08:03:55Z) - You Can REST Now: Automated Specification Inference and Black-Box
Testing of RESTful APIs with Large Language Models [8.753312212588371]
manually documenting APIs is a time-consuming and error-prone task, resulting in unavailable, incomplete, or imprecise documentation.
Recently, Large Language Models (LLMs) have demonstrated exceptional abilities to automate tasks based on their colossal training data.
We present RESTSpecIT, the first automated API specification inference and black-box testing approach.
arXiv Detail & Related papers (2024-02-07T18:55:41Z) - Leveraging Large Language Models to Improve REST API Testing [51.284096009803406]
RESTGPT takes as input an API specification, extracts machine-interpretable rules, and generates example parameter values from natural-language descriptions in the specification.
Our evaluations indicate that RESTGPT outperforms existing techniques in both rule extraction and value generation.
arXiv Detail & Related papers (2023-12-01T19:53:23Z) - Exploring Behaviours of RESTful APIs in an Industrial Setting [0.43012765978447565]
We propose a set of behavioural properties, common to REST APIs, which are used to generate examples of behaviours that these APIs exhibit.
These examples can be used both (i) to further the understanding of the API and (ii) as a source of automatic test cases.
Our approach can generate examples deemed relevant for understanding the system and for a source of test generation by practitioners.
arXiv Detail & Related papers (2023-10-26T11:33:11Z) - Adaptive REST API Testing with Reinforcement Learning [54.68542517176757]
Current testing tools lack efficient exploration mechanisms, treating all operations and parameters equally.
Current tools struggle when response schemas are absent in the specification or exhibit variants.
We present an adaptive REST API testing technique incorporates reinforcement learning to prioritize operations during exploration.
arXiv Detail & Related papers (2023-09-08T20:27:05Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
We evaluate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval.
We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English.
For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost.
arXiv Detail & Related papers (2023-05-10T16:40:52Z) - REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust
Encoder as a Service [67.0982378001551]
We show how a service provider pre-trains an encoder and then deploys it as a cloud service API.
A client queries the cloud service API to obtain feature vectors for its training/testing inputs.
We show that the cloud service only needs to provide two APIs to enable a client to certify the robustness of its downstream classifier.
arXiv Detail & Related papers (2023-01-07T17:40:11Z) - Simple Transparent Adversarial Examples [65.65977217108659]
We introduce secret embedding and transparent adversarial examples as a simpler way to evaluate robustness.
As a result, they pose a serious threat where APIs are used for high-stakes applications.
arXiv Detail & Related papers (2021-05-20T11:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.