It Couldn't Help But Overhear: On the Limits of Modelling Meta-Communicative Grounding Acts with Supervised Learning
- URL: http://arxiv.org/abs/2405.01139v3
- Date: Thu, 8 Aug 2024 11:12:31 GMT
- Title: It Couldn't Help But Overhear: On the Limits of Modelling Meta-Communicative Grounding Acts with Supervised Learning
- Authors: Brielen Madureira, David Schlangen,
- Abstract summary: Overhearers are deprived of the privilege of performing grounding acts and can only conjecture about intended meanings.
We show that there is evidence pointing to the impossibility of properly modelling human meta-communicative acts with data-driven learning models.
Most importantly, we wish to bring this topic back to the community's table, encouraging discussion on the consequences of having models designed to only "listen in"
- Score: 19.812562421377706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active participation in a conversation is key to building common ground, since understanding is jointly tailored by producers and recipients. Overhearers are deprived of the privilege of performing grounding acts and can only conjecture about intended meanings. Still, data generation and annotation, modelling, training and evaluation of NLP dialogue models place reliance on the overhearing paradigm. How much of the underlying grounding processes are thereby forfeited? As we show, there is evidence pointing to the impossibility of properly modelling human meta-communicative acts with data-driven learning models. In this paper, we discuss this issue and provide a preliminary analysis on the variability of human decisions for requesting clarification. Most importantly, we wish to bring this topic back to the community's table, encouraging discussion on the consequences of having models designed to only "listen in".
Related papers
- Grounding Gaps in Language Model Generations [67.79817087930678]
We study whether large language models generate text that reflects human grounding.
We find that -- compared to humans -- LLMs generate language with less conversational grounding.
To understand the roots of the identified grounding gap, we examine the role of instruction tuning and preference optimization.
arXiv Detail & Related papers (2023-11-15T17:40:27Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Don't Copy the Teacher: Data and Model Challenges in Embodied Dialogue [92.01165203498299]
Embodied dialogue instruction following requires an agent to complete a complex sequence of tasks from a natural language exchange.
This paper argues that imitation learning (IL) and related low-level metrics are actually misleading and do not align with the goals of embodied dialogue research.
arXiv Detail & Related papers (2022-10-10T05:51:40Z) - Are Metrics Enough? Guidelines for Communicating and Visualizing
Predictive Models to Subject Matter Experts [7.768301998812552]
We describe an iterative study conducted with both subject matter experts and data scientists to understand the gaps in communication.
We derive a set of communication guidelines that use visualization as a common medium for communicating the strengths and weaknesses of a model.
arXiv Detail & Related papers (2022-05-11T19:40:24Z) - TANet: Thread-Aware Pretraining for Abstractive Conversational
Summarization [27.185068253347257]
We build a large-scale (11M) pretraining dataset called RCS based on the multi-person discussions in the Reddit community.
We then present TANet, a thread-aware Transformer-based network.
Unlike the existing pre-trained models that treat a conversation as a sequence of sentences, we argue that the inherent contextual dependency plays an essential role in understanding the entire conversation.
arXiv Detail & Related papers (2022-04-09T16:08:46Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.