Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders
- URL: http://arxiv.org/abs/2405.01460v2
- Date: Mon, 6 May 2024 06:50:10 GMT
- Title: Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders
- Authors: Yi Yu, Yufei Wang, Song Xia, Wenhan Yang, Shijian Lu, Yap-Peng Tan, Alex C. Kot,
- Abstract summary: Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled.
Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method.
- Score: 101.42201747763178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled. Defenses against these poisoning attacks can be categorized based on whether specific interventions are adopted during training. The first approach is training-time defense, such as adversarial training, which can mitigate poisoning effects but is computationally intensive. The other approach is pre-training purification, e.g., image short squeezing, which consists of several simple compressions but often encounters challenges in dealing with various UEs. Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method. Firstly, we uncover rate-constrained variational autoencoders (VAEs), demonstrating a clear tendency to suppress the perturbations in UEs. We subsequently conduct a theoretical analysis for this phenomenon. Building upon these insights, we introduce a disentangle variational autoencoder (D-VAE), capable of disentangling the perturbations with learnable class-wise embeddings. Based on this network, a two-stage purification approach is naturally developed. The first stage focuses on roughly eliminating perturbations, while the second stage produces refined, poison-free results, ensuring effectiveness and robustness across various scenarios. Extensive experiments demonstrate the remarkable performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset. Code is available at https://github.com/yuyi-sd/D-VAE.
Related papers
- FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification [10.911464455072391]
FACTUAL is a Contrastive Learning framework for Adversarial Training and robust SAR classification.
Our model achieves 99.7% accuracy on clean samples, and 89.6% on perturbed samples, both outperforming previous state-of-the-art methods.
arXiv Detail & Related papers (2024-04-04T06:20:22Z) - Detection and Mitigation of Byzantine Attacks in Distributed Training [24.951227624475443]
An abnormal Byzantine behavior of the worker nodes can derail the training and compromise the quality of the inference.
Recent work considers a wide range of attack models and has explored robust aggregation and/or computational redundancy to correct the distorted gradients.
In this work, we consider attack models ranging from strong ones: $q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak ones: $q$ randomly chosen adversaries with limited collusion abilities.
arXiv Detail & Related papers (2022-08-17T05:49:52Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
Adrial purification refers to a class of defense methods that remove adversarial perturbations using a generative model.
We propose DiffPure that uses diffusion models for adversarial purification.
Our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods.
arXiv Detail & Related papers (2022-05-16T06:03:00Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
Studies show that neural networks are susceptible to adversarial attacks.
This exposes a potential threat to neural network-based intelligent systems.
We propose a method for counteracting adversarial perturbations to improve adversarial robustness.
arXiv Detail & Related papers (2021-03-08T06:27:24Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Overfitting in adversarially robust deep learning [86.11788847990783]
We show that overfitting to the training set does in fact harm robust performance to a very large degree in adversarially robust training.
We also show that effects such as the double descent curve do still occur in adversarially trained models, yet fail to explain the observed overfitting.
arXiv Detail & Related papers (2020-02-26T15:40:50Z) - Towards Rapid and Robust Adversarial Training with One-Step Attacks [0.0]
Adversarial training is the most successful method for increasing the robustness of neural networks against adversarial attacks.
We present two ideas that enable adversarial training with the computationally less expensive Fast Gradient Sign Method.
We show that noise injection in conjunction with FGSM-based adversarial training achieves comparable results to adversarial training with PGD while being considerably faster.
arXiv Detail & Related papers (2020-02-24T07:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.