Digital Twin Generators for Disease Modeling
- URL: http://arxiv.org/abs/2405.01488v1
- Date: Thu, 2 May 2024 17:23:04 GMT
- Title: Digital Twin Generators for Disease Modeling
- Authors: Nameyeh Alam, Jake Basilico, Daniele Bertolini, Satish Casie Chetty, Heather D'Angelo, Ryan Douglas, Charles K. Fisher, Franklin Fuller, Melissa Gomes, Rishabh Gupta, Alex Lang, Anton Loukianov, Rachel Mak-McCully, Cary Murray, Hanalei Pham, Susanna Qiao, Elena Ryapolova-Webb, Aaron Smith, Dimitri Theoharatos, Anil Tolwani, Eric W. Tramel, Anna Vidovszky, Judy Viduya, Jonathan R. Walsh,
- Abstract summary: A patient's digital twin is a computational model that describes the evolution of their health over time.
Digital twins have the potential to revolutionize medicine by enabling individual-level computer simulations of human health.
- Score: 2.341540989979203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A patient's digital twin is a computational model that describes the evolution of their health over time. Digital twins have the potential to revolutionize medicine by enabling individual-level computer simulations of human health, which can be used to conduct more efficient clinical trials or to recommend personalized treatment options. Due to the overwhelming complexity of human biology, machine learning approaches that leverage large datasets of historical patients' longitudinal health records to generate patients' digital twins are more tractable than potential mechanistic models. In this manuscript, we describe a neural network architecture that can learn conditional generative models of clinical trajectories, which we call Digital Twin Generators (DTGs), that can create digital twins of individual patients. We show that the same neural network architecture can be trained to generate accurate digital twins for patients across 13 different indications simply by changing the training set and tuning hyperparameters. By introducing a general purpose architecture, we aim to unlock the ability to scale machine learning approaches to larger datasets and across more indications so that a digital twin could be created for any patient in the world.
Related papers
- Digital Twin Ecosystem for Oncology Clinical Operations [0.8130739369606821]
This paper introduces a novel digital twin framework specifically designed to enhance oncology clinical operations.
We propose the integration of multiple specialized digital twins, such as the Medical Necessity Twin, Care Navigator Twin, and Clinical History Twin.
By synthesizing multiple data sources and aligning them with the National Comprehensive Cancer Network (NCCN) guidelines, we create a dynamic Cancer Care Path.
arXiv Detail & Related papers (2024-09-26T08:56:54Z) - Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning [15.106435744696013]
A digital twin is a virtual replica of a real-world physical phenomena that uses mathematical modeling to characterize and simulate its defining features.
We propose a method to identify digital twin model parameters using only noninvasive patient health data.
arXiv Detail & Related papers (2024-02-29T23:04:42Z) - From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Probing the Limits and Capabilities of Diffusion Models for the Anatomic
Editing of Digital Twins [0.9628617363701458]
We investigate the capacity of Latent Diffusion Models to edit digital twins to create anatomic variants.
We specifically edit digital twins to introduce anatomic variation at different spatial scales and within localized regions.
arXiv Detail & Related papers (2023-12-30T14:21:30Z) - Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
Continuous-Time Liquid Neural Networks [0.0]
Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure.
The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical.
This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities.
arXiv Detail & Related papers (2023-07-08T12:52:31Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - A perspective on the use of health digital twins in computational
pathology [0.0]
A digital health twin can be defined as a virtual model of a physical person, in this specific case, a patient.
This virtual model is constituted by multidimensional data that can host from clinical, molecular and therapeutic parameters to sensor data and living conditions.
arXiv Detail & Related papers (2022-11-30T11:13:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Man, machine and work in a digital twin setup: a case study [77.34726150561087]
A digital twin as a virtual counterpart of a physical human-robot assembly system is built as a front-runner for validation and control through design, build, and operation.
The forms of digital twins along the system life cycle, the building blocks, and potential advantages are presented.
arXiv Detail & Related papers (2020-06-15T20:54:43Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.