Software Mention Recognition with a Three-Stage Framework Based on BERTology Models at SOMD 2024
- URL: http://arxiv.org/abs/2405.01575v1
- Date: Tue, 23 Apr 2024 17:06:24 GMT
- Title: Software Mention Recognition with a Three-Stage Framework Based on BERTology Models at SOMD 2024
- Authors: Thuy Nguyen Thi, Anh Nguyen Viet, Thin Dang Van, Ngan Nguyen Luu Thuy,
- Abstract summary: This paper describes our systems for the sub-task I in the Software Mention Detection in Scholarly Publications shared-task.
Our best performing system addresses the named entity recognition problem through a three-stage framework.
Our framework based on the XLM-R-based model achieves a weighted F1-score of 67.80%, delivering our team the 3rd rank in Sub-task I for the Software Mention Recognition task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our systems for the sub-task I in the Software Mention Detection in Scholarly Publications shared-task. We propose three approaches leveraging different pre-trained language models (BERT, SciBERT, and XLM-R) to tackle this challenge. Our bestperforming system addresses the named entity recognition (NER) problem through a three-stage framework. (1) Entity Sentence Classification - classifies sentences containing potential software mentions; (2) Entity Extraction - detects mentions within classified sentences; (3) Entity Type Classification - categorizes detected mentions into specific software types. Experiments on the official dataset demonstrate that our three-stage framework achieves competitive performance, surpassing both other participating teams and our alternative approaches. As a result, our framework based on the XLM-R-based model achieves a weighted F1-score of 67.80%, delivering our team the 3rd rank in Sub-task I for the Software Mention Recognition task.
Related papers
- Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs [73.74375912785689]
This paper proposes unified training strategies for speech recognition systems.
We demonstrate that training a single model for all three tasks enhances VSR and AVSR performance.
We also introduce a greedy pseudo-labelling approach to more effectively leverage unlabelled samples.
arXiv Detail & Related papers (2024-11-04T16:46:53Z) - AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text [0.0]
SemEval-2024 Task 8 provides a challenge to detect human-written and machine-generated text.
This paper proposes a system that mainly deals with Subtask B.
It aims to detect if given full text is written by human or is generated by a specific Large Language Model (LLM), which is actually a multi-class text classification task.
arXiv Detail & Related papers (2024-04-01T06:25:47Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
We introduce an effective and innovative ICL framework for the setting of few-shot nested NER.
We improve the ICL prompt by devising a novel example demonstration selection mechanism, EnDe retriever.
In EnDe retriever, we employ contrastive learning to perform three types of representation learning, in terms of semantic similarity, boundary similarity, and label similarity.
arXiv Detail & Related papers (2024-02-02T06:57:53Z) - IntenDD: A Unified Contrastive Learning Approach for Intent Detection
and Discovery [12.905097743551774]
We propose IntenDD, a unified approach leveraging a shared utterance encoding backbone.
IntenDD uses an entirely unsupervised contrastive learning strategy for representation learning.
We find that our approach consistently outperforms competitive baselines across all three tasks.
arXiv Detail & Related papers (2023-10-25T16:50:24Z) - IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named
Entity Recognition using Knowledge Bases [53.054598423181844]
We present a novel NER cascade approach comprising three steps.
We empirically demonstrate the significance of external knowledge bases in accurately classifying fine-grained and emerging entities.
Our system exhibits robust performance in the MultiCoNER2 shared task, even in the low-resource language setting.
arXiv Detail & Related papers (2023-04-20T20:30:34Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
Named entity recognition (NER) is an important research problem in natural language processing.
This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task.
arXiv Detail & Related papers (2023-03-20T05:11:22Z) - Task formulation for Extracting Social Determinants of Health from
Clinical Narratives [0.0]
The 2022 n2c2 NLP Challenge posed identification of social determinants of health in clinical narratives.
We present three systems that we developed for the Challenge and discuss the distinctive task formulation used in each of the three systems.
arXiv Detail & Related papers (2023-01-26T20:00:54Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
Coreference resolution systems need to tackle two main tasks.
One task is to detect all of the potential mentions, the other is to learn the linking of an antecedent for each possible mention.
We propose a hybrid rule-neural coreference resolution system based on actor-critic learning.
arXiv Detail & Related papers (2022-12-20T08:55:47Z) - UniTE: Unified Translation Evaluation [63.58868113074476]
UniTE is the first unified framework engaged with abilities to handle all three evaluation tasks.
We testify our framework on WMT 2019 Metrics and WMT 2020 Quality Estimation benchmarks.
arXiv Detail & Related papers (2022-04-28T08:35:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.