Mining patterns in syntax trees to automate code reviews of student solutions for programming exercises
- URL: http://arxiv.org/abs/2405.01579v1
- Date: Fri, 26 Apr 2024 14:03:19 GMT
- Title: Mining patterns in syntax trees to automate code reviews of student solutions for programming exercises
- Authors: Charlotte Van Petegem, Kasper Demeyere, Rien Maertens, Niko Strijbol, Bram De Wever, Bart Mesuere, Peter Dawyndt,
- Abstract summary: We introduce ECHO, a machine learning method to automate the reuse of feedback in educational code reviews.
Based on annotations from both automated linting tools and human reviewers, we show that ECHO can accurately and quickly predict appropriate feedback annotations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In programming education, providing manual feedback is essential but labour-intensive, posing challenges in consistency and timeliness. We introduce ECHO, a machine learning method to automate the reuse of feedback in educational code reviews by analysing patterns in abstract syntax trees. This study investigates two primary questions: whether ECHO can predict feedback annotations to specific lines of student code based on previously added annotations by human reviewers (RQ1), and whether its training and prediction speeds are suitable for using ECHO for real-time feedback during live code reviews by human reviewers (RQ2). Our results, based on annotations from both automated linting tools and human reviewers, show that ECHO can accurately and quickly predict appropriate feedback annotations. Its efficiency in processing and its flexibility in adapting to feedback patterns can significantly reduce the time and effort required for manual feedback provisioning in educational settings.
Related papers
- Predicting Expert Evaluations in Software Code Reviews [8.012861163935904]
This paper presents an algorithmic model that automates aspects of code review typically avoided due to their complexity or subjectivity.
Instead of replacing manual reviews, our model adds insights that help reviewers focus on more impactful tasks.
arXiv Detail & Related papers (2024-09-23T16:01:52Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
We propose a framework for feedback generation that optimize both correctness and alignment using reinforcement learning (RL)
Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO)
arXiv Detail & Related papers (2024-03-02T20:25:50Z) - A large language model-assisted education tool to provide feedback on
open-ended responses [2.624902795082451]
We present a tool that uses large language models (LLMs), guided by instructor-defined criteria, to automate responses to open-ended questions.
Our tool delivers rapid personalized feedback, enabling students to quickly test their knowledge and identify areas for improvement.
arXiv Detail & Related papers (2023-07-25T19:49:55Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation.
We propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences.
arXiv Detail & Related papers (2023-06-08T04:04:47Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - An Exploratory Analysis of Feedback Types Used in Online Coding
Exercises [0.0]
This research aims at the identification of feedback types applied by CodingBat, Scratch and Blockly.
The study revealed difficulties in identifying clear-cut boundaries between feedback types.
arXiv Detail & Related papers (2022-06-07T07:52:17Z) - Simulating Bandit Learning from User Feedback for Extractive Question
Answering [51.97943858898579]
We study learning from user feedback for extractive question answering by simulating feedback using supervised data.
We show that systems initially trained on a small number of examples can dramatically improve given feedback from users on model-predicted answers.
arXiv Detail & Related papers (2022-03-18T17:47:58Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Annotation Curricula to Implicitly Train Non-Expert Annotators [56.67768938052715]
voluntary studies often require annotators to familiarize themselves with the task, its annotation scheme, and the data domain.
This can be overwhelming in the beginning, mentally taxing, and induce errors into the resulting annotations.
We propose annotation curricula, a novel approach to implicitly train annotators.
arXiv Detail & Related papers (2021-06-04T09:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.