Adapting Self-Supervised Learning for Computational Pathology
- URL: http://arxiv.org/abs/2405.01688v1
- Date: Thu, 2 May 2024 19:22:39 GMT
- Title: Adapting Self-Supervised Learning for Computational Pathology
- Authors: Eric Zimmermann, Neil Tenenholtz, James Hall, George Shaikovski, Michal Zelechowski, Adam Casson, Fausto Milletari, Julian Viret, Eugene Vorontsov, Siqi Liu, Kristen Severson,
- Abstract summary: Self-supervised learning (SSL) has emerged as a key technique for training networks that can generalize well to diverse tasks without task-specific supervision.
We present an investigation of modifications to SSL for pathology data, specifically focusing on the DINOv2 algorithm.
- Score: 3.009236957464476
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Self-supervised learning (SSL) has emerged as a key technique for training networks that can generalize well to diverse tasks without task-specific supervision. This property makes SSL desirable for computational pathology, the study of digitized images of tissues, as there are many target applications and often limited labeled training samples. However, SSL algorithms and models have been primarily developed in the field of natural images and whether their performance can be improved by adaptation to particular domains remains an open question. In this work, we present an investigation of modifications to SSL for pathology data, specifically focusing on the DINOv2 algorithm. We propose alternative augmentations, regularization functions, and position encodings motivated by the characteristics of pathology images. We evaluate the impact of these changes on several benchmarks to demonstrate the value of tailored approaches.
Related papers
- Reducing self-supervised learning complexity improves weakly-supervised
classification performance in computational pathology [0.0]
Self-supervised learning (SSL) methods allow for large-scale analyses on non-annotated data.
We investigated the complexity of SSL in relation to classification performance with the utilization of consumer-grade hardware.
Our experiments demonstrate that we can improve downstream classification performance whilst reducing SSL training duration by 90%.
arXiv Detail & Related papers (2024-03-07T14:56:06Z) - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets [10.868779327544688]
Self-supervised learning has shown to be an effective method for utilizing unlabeled data.
We execute the largest-scale study of SSL pre-training on pathology image data.
For the first time, we apply SSL to the challenging task of nuclei instance segmentation.
arXiv Detail & Related papers (2022-12-09T06:38:34Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - REET: Robustness Evaluation and Enhancement Toolbox for Computational
Pathology [1.452875650827562]
We propose the first domain-specific Robustness Evaluation and Enhancement Toolbox (REET) for computational pathology applications.
REET provides a suite of algorithmic strategies for enabling robustness assessment of predictive models.
REET also enables efficient and robust training of deep learning pipelines in computational pathology.
arXiv Detail & Related papers (2022-01-28T18:23:55Z) - Improving Self-supervised Learning with Hardness-aware Dynamic
Curriculum Learning: An Application to Digital Pathology [2.2742357407157847]
Self-supervised learning (SSL) has recently shown tremendous potential to learn generic visual representations useful for many image analysis tasks.
The existing SSL methods fail to generalize to downstream tasks when the number of labeled training instances is small or if the domain shift between the transfer domains is significant.
This paper attempts to improve self-supervised pretrained representations through the lens of curriculum learning.
arXiv Detail & Related papers (2021-08-16T15:44:48Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Data Efficient and Weakly Supervised Computational Pathology on Whole
Slide Images [4.001273534300757]
computational pathology has the potential to enable objective diagnosis, therapeutic response prediction and identification of new morphological features of clinical relevance.
Deep learning-based computational pathology approaches either require manual annotation of gigapixel whole slide images (WSIs) in fully-supervised settings or thousands of WSIs with slide-level labels in a weakly-supervised setting.
Here we present CLAM - Clustering-constrained attention multiple instance learning.
arXiv Detail & Related papers (2020-04-20T23:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.