CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning
- URL: http://arxiv.org/abs/2405.01758v1
- Date: Thu, 2 May 2024 21:50:26 GMT
- Title: CGD: Constraint-Guided Diffusion Policies for UAV Trajectory Planning
- Authors: Kota Kondo, Andrea Tagliabue, Xiaoyi Cai, Claudius Tewari, Olivia Garcia, Marcos Espitia-Alvarez, Jonathan P. How,
- Abstract summary: A successful strategy to reduce computation time involves using Imitation Learning (IL) to develop fast neural network (NN) policies from experts.
Although the resulting NN policies are effective at quickly generating trajectories similar to those from the expert, their output does not explicitly account for dynamic feasibility.
We propose Constraint-Guided Diffusion (CGD), a novel IL-based approach to trajectory planning.
- Score: 26.10588918124538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional optimization-based planners, while effective, suffer from high computational costs, resulting in slow trajectory generation. A successful strategy to reduce computation time involves using Imitation Learning (IL) to develop fast neural network (NN) policies from those planners, which are treated as expert demonstrators. Although the resulting NN policies are effective at quickly generating trajectories similar to those from the expert, (1) their output does not explicitly account for dynamic feasibility, and (2) the policies do not accommodate changes in the constraints different from those used during training. To overcome these limitations, we propose Constraint-Guided Diffusion (CGD), a novel IL-based approach to trajectory planning. CGD leverages a hybrid learning/online optimization scheme that combines diffusion policies with a surrogate efficient optimization problem, enabling the generation of collision-free, dynamically feasible trajectories. The key ideas of CGD include dividing the original challenging optimization problem solved by the expert into two more manageable sub-problems: (a) efficiently finding collision-free paths, and (b) determining a dynamically-feasible time-parametrization for those paths to obtain a trajectory. Compared to conventional neural network architectures, we demonstrate through numerical evaluations significant improvements in performance and dynamic feasibility under scenarios with new constraints never encountered during training.
Related papers
- Improved deep learning of chaotic dynamical systems with multistep penalty losses [0.0]
Predicting the long-term behavior of chaotic systems remains a formidable challenge.
This paper introduces a novel framework that addresses these challenges by leveraging the recently proposed multi-step penalty operators.
arXiv Detail & Related papers (2024-10-08T00:13:57Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics [13.129654942805846]
Model Predictive Control (MP)-based trajectory planning has been widely used in, and Control Barrier (CBF) can improve its constraints.
In this paper, we propose a self-supervised learning algorithm for CBF-MPC trajectory planning.
arXiv Detail & Related papers (2024-05-15T09:38:52Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - Collaborative Multidisciplinary Design Optimization with Neural Networks [1.2691047660244335]
We show that, in the case of Collaborative Optimization, faster and more reliable convergence can be obtained by solving an interesting instance of binary classification.
We propose to train a neural network with an asymmetric loss function, a structure that guarantees Lipshitz continuity, and a regularization towards respecting basic distance function properties.
arXiv Detail & Related papers (2021-06-11T00:03:47Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
We propose a generalized Differential Dynamic Programming (DDP) neural architecture that accepts both residual connections and convolution layers.
The resulting optimal control representation admits a gameoretic perspective, in which training residual networks can be interpreted as cooperative trajectory optimization on state-augmented systems.
arXiv Detail & Related papers (2020-07-17T10:19:17Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - DDPNOpt: Differential Dynamic Programming Neural Optimizer [29.82841891919951]
We show that most widely-used algorithms for trainings can be linked to the Differential Dynamic Programming (DDP)
In this vein, we propose a new class of DDPOpt, for training feedforward and convolution networks.
arXiv Detail & Related papers (2020-02-20T15:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.