Robust Explainable Recommendation
- URL: http://arxiv.org/abs/2405.01855v1
- Date: Fri, 3 May 2024 05:03:07 GMT
- Title: Robust Explainable Recommendation
- Authors: Sairamvinay Vijayaraghavan, Prasant Mohapatra,
- Abstract summary: We present a general framework for feature-aware explainable recommenders that can withstand external attacks.
Our framework is simple to implement and supports different methods regardless of the internal model structure and intrinsic utility within any model.
- Score: 10.186029242664931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Recommender Systems is an important field of study which provides reasons behind the suggested recommendations. Explanations with recommender systems are useful for developers while debugging anomalies within the system and for consumers while interpreting the model's effectiveness in capturing their true preferences towards items. However, most of the existing state-of-the-art (SOTA) explainable recommenders could not retain their explanation capability under noisy circumstances and moreover are not generalizable across different datasets. The robustness of the explanations must be ensured so that certain malicious attackers do not manipulate any high-stake decision scenarios to their advantage, which could cause severe consequences affecting large groups of interest. In this work, we present a general framework for feature-aware explainable recommenders that can withstand external attacks and provide robust and generalized explanations. This paper presents a novel framework which could be utilized as an additional defense tool, preserving the global explainability when subject to model-based white box attacks. Our framework is simple to implement and supports different methods regardless of the internal model structure and intrinsic utility within any model. We experimented our framework on two architecturally different feature-based SOTA explainable algorithms by training them on three popular e-commerce datasets of increasing scales. We noticed that both the algorithms displayed an overall improvement in the quality and robustness of the global explainability under normal as well as noisy environments across all the datasets, indicating the flexibility and mutability of our framework.
Related papers
- Stability of Explainable Recommendation [10.186029242664931]
We study the vulnerability of existent feature-oriented explainable recommenders.
We observe that all the explainable models are vulnerable to increased noise levels.
Our study presents an empirical verification on the topic of robust explanations in recommender systems.
arXiv Detail & Related papers (2024-05-03T04:44:51Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
We propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP)
CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges.
Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
arXiv Detail & Related papers (2023-09-09T04:05:56Z) - GLOBE-CE: A Translation-Based Approach for Global Counterfactual
Explanations [10.276136171459731]
Global & Efficient Counterfactual Explanations (GLOBE-CE) is a flexible framework that tackles the reliability and scalability issues associated with current state-of-the-art.
We provide a unique mathematical analysis of categorical feature translations, utilising it in our method.
Experimental evaluation with publicly available datasets and user studies demonstrate that GLOBE-CE performs significantly better than the current state-of-the-art.
arXiv Detail & Related papers (2023-05-26T15:26:59Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Denoised MDPs: Learning World Models Better Than the World Itself [94.74665254213588]
This work categorizes information out in the wild into four types based on controllability and relation with reward, and formulates useful information as that which is both controllable and reward-relevant.
Experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone.
arXiv Detail & Related papers (2022-06-30T17:59:49Z) - From Intrinsic to Counterfactual: On the Explainability of
Contextualized Recommender Systems [43.93801836660617]
We show that by utilizing the contextual features (e.g., item reviews from users), we can design a series of explainable recommender systems.
We propose three types of explainable recommendation strategies with gradual change of model transparency: whitebox, graybox, and blackbox.
Our model achieves highly competitive ranking performance, and generates accurate and effective explanations in terms of numerous quantitative metrics and qualitative visualizations.
arXiv Detail & Related papers (2021-10-28T01:54:04Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Robust and Stable Black Box Explanations [31.05743211871823]
We propose a novel framework for generating robust and stable explanations of black box models.
We instantiate this algorithm for explanations in the form of linear models and decision sets.
arXiv Detail & Related papers (2020-11-12T02:29:03Z) - Beyond Individualized Recourse: Interpretable and Interactive Summaries
of Actionable Recourses [14.626432428431594]
We propose a novel model framework called Actionable Recourse agnostic (AReS) to construct global counterfactual explanations.
We formulate a novel objective which simultaneously optimize for correctness of the recourses and interpretability of the explanations.
Our framework can provide decision makers with a comprehensive overview of recourses corresponding to any black box model.
arXiv Detail & Related papers (2020-09-15T15:14:08Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.