Comparing Personalized Relevance Algorithms for Directed Graphs
- URL: http://arxiv.org/abs/2405.02261v1
- Date: Fri, 3 May 2024 17:24:08 GMT
- Title: Comparing Personalized Relevance Algorithms for Directed Graphs
- Authors: Luca Cavalcanti, Cristian Consonni, Martin Brugnara, David Laniado, Alberto Montresor,
- Abstract summary: We present an interactive Web platform that, given a directed graph, allows identifying the most relevant nodes related to a given query node.
We provide 50 pre-loaded datasets from Wikipedia, Twitter, and Amazon and seven algorithms.
Our tool helps to uncover hidden relationships within the data, which makes of it a valuable addition to the repertoire of graph analysis algorithms.
- Score: 0.34952465649465553
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present an interactive Web platform that, given a directed graph, allows identifying the most relevant nodes related to a given query node. Besides well-established algorithms such as PageRank and Personalized PageRank, the demo includes Cyclerank, a novel algorithm that addresses some of their limitations by leveraging cyclic paths to compute personalized relevance scores. Our demo design enables two use cases: (a) algorithm comparison, comparing the results obtained with different algorithms, and (b) dataset comparison, for exploring and gaining insights into a dataset and comparing it with others. We provide 50 pre-loaded datasets from Wikipedia, Twitter, and Amazon and seven algorithms. Users can upload new datasets, and new algorithms can be easily added. By showcasing efficient algorithms to compute relevance scores in directed graphs, our tool helps to uncover hidden relationships within the data, which makes of it a valuable addition to the repertoire of graph analysis algorithms.
Related papers
- Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Performance Evaluation and Comparison of a New Regression Algorithm [4.125187280299247]
We compare the performance of a newly proposed regression algorithm against four conventional machine learning algorithms.
The reader is free to replicate our results since we have provided the source code in a GitHub repository.
arXiv Detail & Related papers (2023-06-15T13:01:16Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
We introduce ParlayANN, a library of deterministic and parallel graph-based approximate nearest neighbor search algorithms.
We develop novel parallel implementations for four state-of-the-art graph-based ANNS algorithms that scale to billion-scale datasets.
arXiv Detail & Related papers (2023-05-07T19:28:23Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Comparison and Benchmark of Graph Clustering Algorithms [6.106697372971535]
We benchmarked more than 70 graph clustering programs to evaluate their runtime and quality performance.
Our work is capable to not only supply a start point for engineers to select clustering algorithms but also could provide a viewpoint for researchers to design new algorithms.
arXiv Detail & Related papers (2020-05-10T22:54:36Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.