Adaptive Semantic Token Selection for AI-native Goal-oriented Communications
- URL: http://arxiv.org/abs/2405.02330v1
- Date: Thu, 25 Apr 2024 13:49:50 GMT
- Title: Adaptive Semantic Token Selection for AI-native Goal-oriented Communications
- Authors: Alessio Devoto, Simone Petruzzi, Jary Pomponi, Paolo Di Lorenzo, Simone Scardapane,
- Abstract summary: We propose a novel design for AI-native goal-oriented communications.
We exploit transformer neural networks under dynamic inference constraints on bandwidth and computation.
We show that our model improves over state-of-the-art token selection mechanisms.
- Score: 11.92172357956248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel design for AI-native goal-oriented communications, exploiting transformer neural networks under dynamic inference constraints on bandwidth and computation. Transformers have become the standard architecture for pretraining large-scale vision and text models, and preliminary results have shown promising performance also in deep joint source-channel coding (JSCC). Here, we consider a dynamic model where communication happens over a channel with variable latency and bandwidth constraints. Leveraging recent works on conditional computation, we exploit the structure of the transformer blocks and the multihead attention operator to design a trainable semantic token selection mechanism that learns to select relevant tokens (e.g., image patches) from the input signal. This is done dynamically, on a per-input basis, with a rate that can be chosen as an additional input by the user. We show that our model improves over state-of-the-art token selection mechanisms, exhibiting high accuracy for a wide range of latency and bandwidth constraints, without the need for deploying multiple architectures tailored to each constraint. Last, but not least, the proposed token selection mechanism helps extract powerful semantics that are easy to understand and explain, paving the way for interpretable-by-design models for the next generation of AI-native communication systems.
Related papers
- AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
We introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks.
AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation.
We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance.
arXiv Detail & Related papers (2024-11-07T18:43:17Z) - Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency [59.15544887307901]
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission.
Existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility.
We propose a novel trustworthy ISC framework that employs Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks.
arXiv Detail & Related papers (2024-08-07T14:32:36Z) - DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)
Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through an innovative patch tokenization.
arXiv Detail & Related papers (2024-07-18T22:15:35Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Integrating Pre-Trained Language Model with Physical Layer Communications [19.20941153929975]
We introduce a practical ondevice AI communication framework, integrated with physical layer (PHY) communication functions.
Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities.
arXiv Detail & Related papers (2024-02-18T17:27:51Z) - Todyformer: Towards Holistic Dynamic Graph Transformers with
Structure-Aware Tokenization [6.799413002613627]
Todyformer is a novel Transformer-based neural network tailored for dynamic graphs.
It unifies the local encoding capacity of Message-Passing Neural Networks (MPNNs) with the global encoding of Transformers.
We show that Todyformer consistently outperforms the state-of-the-art methods for downstream tasks.
arXiv Detail & Related papers (2024-02-02T23:05:30Z) - Rate-Adaptive Coding Mechanism for Semantic Communications With
Multi-Modal Data [23.597759255020296]
We propose a distributed multi-modal semantic communication framework incorporating the conventional channel encoder/decoder.
We establish a general rate-adaptive coding mechanism for various types of multi-modal semantic tasks.
Numerical results show that the proposed mechanism fares better than both conventional communication and existing semantic communication systems.
arXiv Detail & Related papers (2023-05-18T07:31:37Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.