A Survey on Contribution Evaluation in Vertical Federated Learning
- URL: http://arxiv.org/abs/2405.02364v1
- Date: Fri, 3 May 2024 06:32:07 GMT
- Title: A Survey on Contribution Evaluation in Vertical Federated Learning
- Authors: Yue Cui, Chung-ju Huang, Yuzhu Zhang, Leye Wang, Lixin Fan, Xiaofang Zhou, Qiang Yang,
- Abstract summary: Vertical Federated Learning (VFL) has emerged as a critical approach in machine learning to address privacy concerns.
This paper provides a review of contribution evaluation in VFL.
We explore various tasks in VFL that involving contribution evaluation and analyze their required evaluation properties.
- Score: 26.32678862011122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical Federated Learning (VFL) has emerged as a critical approach in machine learning to address privacy concerns associated with centralized data storage and processing. VFL facilitates collaboration among multiple entities with distinct feature sets on the same user population, enabling the joint training of predictive models without direct data sharing. A key aspect of VFL is the fair and accurate evaluation of each entity's contribution to the learning process. This is crucial for maintaining trust among participating entities, ensuring equitable resource sharing, and fostering a sustainable collaboration framework. This paper provides a thorough review of contribution evaluation in VFL. We categorize the vast array of contribution evaluation techniques along the VFL lifecycle, granularity of evaluation, privacy considerations, and core computational methods. We also explore various tasks in VFL that involving contribution evaluation and analyze their required evaluation properties and relation to the VFL lifecycle phases. Finally, we present a vision for the future challenges of contribution evaluation in VFL. By providing a structured analysis of the current landscape and potential advancements, this paper aims to guide researchers and practitioners in the design and implementation of more effective, efficient, and privacy-centric VFL solutions. Relevant literature and open-source resources have been compiled and are being continuously updated at the GitHub repository: \url{https://github.com/cuiyuebing/VFL_CE}.
Related papers
- Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - De-VertiFL: A Solution for Decentralized Vertical Federated Learning [7.877130417748362]
This work introduces De-VertiFL, a novel solution for training models in a decentralized VFL setting.
De-VertiFL contributes by introducing a new network architecture distribution, an innovative knowledge exchange scheme, and a distributed federated training process.
The results demonstrate that De-VertiFL generally surpasses state-of-the-art methods in F1-score performance, while maintaining a decentralized and privacy-preserving framework.
arXiv Detail & Related papers (2024-10-08T15:31:10Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning (VFL) is a privacy-preserving distributed learning paradigm.
Recent research has shown promising results addressing various challenges in VFL.
This survey offers a systematic overview of recent developments.
arXiv Detail & Related papers (2024-05-25T16:05:06Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
The evolution of privacy-preserving Federated Learning (FL) has led to an increasing demand for implementing the right to be forgotten.
The implementation of selective forgetting is particularly challenging in FL due to its decentralized nature.
Federated Unlearning (FU) emerges as a strategic solution to address the increasing need for data privacy.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - VertiBench: Advancing Feature Distribution Diversity in Vertical
Federated Learning Benchmarks [31.08004805380727]
This paper introduces two key factors affecting VFL performance - feature importance and feature correlation.
We also introduce a real VFL dataset to address the deficit in image-image VFL scenarios.
arXiv Detail & Related papers (2023-07-05T05:55:08Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
Federated learning (FL) demonstrates its advantages in integrating distributed infrastructure, communication, computing and learning in a privacy-preserving manner.
The robustness and capabilities of existing FL methods are challenged by limited and dynamic data and conditions.
BFL has emerged as a promising approach to address these issues.
arXiv Detail & Related papers (2023-04-26T03:41:17Z) - Towards Interpretable Federated Learning [19.764172768506132]
Federated learning (FL) enables multiple data owners to build machine learning models collaboratively without exposing their private local data.
It is important to balance the need for performance, privacy-preservation and interpretability, especially in mission critical applications such as finance and healthcare.
We conduct comprehensive analysis of the representative IFL approaches, the commonly adopted performance evaluation metrics, and promising directions towards building versatile IFL techniques.
arXiv Detail & Related papers (2023-02-27T02:06:18Z) - Data Valuation for Vertical Federated Learning: A Model-free and
Privacy-preserving Method [14.451118953357605]
FedValue is a privacy-preserving, task-specific but model-free data valuation method for Vertical Federated learning (VFL)
We first introduce a novel data valuation metric, namely MShapley-CMI. The metric evaluates a data party's contribution to a predictive analytics task without the need of executing a machine learning model.
Next, we develop an innovative federated method that calculates the MShapley-CMI value for each data party in a privacy-preserving manner.
arXiv Detail & Related papers (2021-12-15T02:42:28Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.