Robustness of Decentralised Learning to Nodes and Data Disruption
- URL: http://arxiv.org/abs/2405.02377v1
- Date: Fri, 3 May 2024 12:14:48 GMT
- Title: Robustness of Decentralised Learning to Nodes and Data Disruption
- Authors: Luigi Palmieri, Chiara Boldrini, Lorenzo Valerio, Andrea Passarella, Marco Conti, János Kertész,
- Abstract summary: We study the effect of nodes' disruption on the collective learning process.
Our results show that decentralised learning processes are remarkably robust to network disruption.
- Score: 4.062458976723649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the vibrant landscape of AI research, decentralised learning is gaining momentum. Decentralised learning allows individual nodes to keep data locally where they are generated and to share knowledge extracted from local data among themselves through an interactive process of collaborative refinement. This paradigm supports scenarios where data cannot leave local nodes due to privacy or sovereignty reasons or real-time constraints imposing proximity of models to locations where inference has to be carried out. The distributed nature of decentralised learning implies significant new research challenges with respect to centralised learning. Among them, in this paper, we focus on robustness issues. Specifically, we study the effect of nodes' disruption on the collective learning process. Assuming a given percentage of "central" nodes disappear from the network, we focus on different cases, characterised by (i) different distributions of data across nodes and (ii) different times when disruption occurs with respect to the start of the collaborative learning task. Through these configurations, we are able to show the non-trivial interplay between the properties of the network connecting nodes, the persistence of knowledge acquired collectively before disruption or lack thereof, and the effect of data availability pre- and post-disruption. Our results show that decentralised learning processes are remarkably robust to network disruption. As long as even minimum amounts of data remain available somewhere in the network, the learning process is able to recover from disruptions and achieve significant classification accuracy. This clearly varies depending on the remaining connectivity after disruption, but we show that even nodes that remain completely isolated can retain significant knowledge acquired before the disruption.
Related papers
- Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
Decentralized machine learning is gaining momentum, addressing infrastructure challenges and privacy concerns.
This study investigates the interplay between network structure and learning performance using three network topologies and six data distribution methods.
We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation.
arXiv Detail & Related papers (2024-02-28T11:13:53Z) - Exploring the Impact of Disrupted Peer-to-Peer Communications on Fully
Decentralized Learning in Disaster Scenarios [4.618221836001186]
Fully decentralized learning enables the distribution of learning resources across multiple user devices or nodes.
This study investigates the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting.
arXiv Detail & Related papers (2023-10-04T17:24:38Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
We propose a novel method dubbed Knowledge Distillation between Different Distributions" (KD$3$)
We first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network.
We also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment.
arXiv Detail & Related papers (2023-07-21T10:08:58Z) - When Decentralized Optimization Meets Federated Learning [41.58479981773202]
Federated learning is a new learning paradigm for extracting knowledge from distributed data.
Most existing federated learning approaches concentrate on the centralized setting, which is vulnerable to a single-point failure.
An alternative strategy for addressing this issue is the decentralized communication topology.
arXiv Detail & Related papers (2023-06-05T03:51:14Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Homogeneous Learning: Self-Attention Decentralized Deep Learning [0.6091702876917281]
We propose a decentralized learning model called Homogeneous Learning (HL) for tackling non-IID data with a self-attention mechanism.
HL can produce a better performance compared with standalone learning and greatly reduce both the total training rounds by 50.8% and the communication cost by 74.6%.
arXiv Detail & Related papers (2021-10-11T14:05:29Z) - RelaySum for Decentralized Deep Learning on Heterogeneous Data [71.36228931225362]
In decentralized machine learning, workers compute model updates on their local data.
Because the workers only communicate with few neighbors without central coordination, these updates propagate progressively over the network.
This paradigm enables distributed training on networks without all-to-all connectivity, helping to protect data privacy as well as to reduce the communication cost of distributed training in data centers.
arXiv Detail & Related papers (2021-10-08T14:55:32Z) - Consensus Control for Decentralized Deep Learning [72.50487751271069]
Decentralized training of deep learning models enables on-device learning over networks, as well as efficient scaling to large compute clusters.
We show in theory that when the training consensus distance is lower than a critical quantity, decentralized training converges as fast as the centralized counterpart.
Our empirical insights allow the principled design of better decentralized training schemes that mitigate the performance drop.
arXiv Detail & Related papers (2021-02-09T13:58:33Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.