Prediction of Space Weather Events through Analysis of Active Region Magnetograms using Convolutional Neural Network
- URL: http://arxiv.org/abs/2405.02545v1
- Date: Sat, 4 May 2024 03:04:51 GMT
- Title: Prediction of Space Weather Events through Analysis of Active Region Magnetograms using Convolutional Neural Network
- Authors: Shlesh Sakpal,
- Abstract summary: Harmful space weather events can trigger atmospheric changes that result in physical and economic damages on a global scale.
This study aims to leverage machine learning techniques to predict instances of space weather (solar flares, coronal mass ejections, geomagnetic storms) based on active region magnetograms of the Sun.
By inputting the magnetograms into a convolutional neural network (CNN) trained from this dataset, it can serve to predict whether a space weather event will occur, and what type of event it will be.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although space weather events may not directly affect human life, they have the potential to inflict significant harm upon our communities. Harmful space weather events can trigger atmospheric changes that result in physical and economic damages on a global scale. In 1989, Earth experienced the effects of a powerful geomagnetic storm that caused satellites to malfunction, while triggering power blackouts in Canada, along with electricity disturbances in the United States and Europe. With the solar cycle peak rapidly approaching, there is an ever-increasing need to prepare and prevent the damages that can occur, especially to modern-day technology, calling for the need of a comprehensive prediction system. This study aims to leverage machine learning techniques to predict instances of space weather (solar flares, coronal mass ejections, geomagnetic storms), based on active region magnetograms of the Sun. This was done through the use of the NASA DONKI service to determine when these solar events occur, then using data from the NASA Solar Dynamics Observatory to compile a dataset that includes magnetograms of active regions of the Sun 24 hours before the events. By inputting the magnetograms into a convolutional neural network (CNN) trained from this dataset, it can serve to predict whether a space weather event will occur, and what type of event it will be. The model was designed using a custom architecture CNN, and returned an accuracy of 90.27%, a precision of 85.83%, a recall of 91.78%, and an average F1 score of 92.14% across each class (Solar flare [Flare], geomagnetic storm [GMS], coronal mass ejection [CME]). Our results show that using magnetogram data as an input for a CNN is a viable method to space weather prediction. Future work can involve prediction of the magnitude of solar events.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms.
By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares.
Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting.
arXiv Detail & Related papers (2024-05-23T16:17:16Z) - A Foundation Model for the Earth System [82.73624748093333]
We introduce Aurora, a large-scale foundation model for the Earth system trained on over a million hours of diverse data.
Aurora outperforms operational forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution weather forecasting at orders of magnitude smaller computational expense than dedicated existing systems.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - Early Prediction of Geomagnetic Storms by Machine Learning Algorithms [0.0]
Geomagnetic storms (GS) occur when solar winds disrupt Earth's magnetosphere.
Estimate of direct economic impacts of a large scale GS exceeds $40 billion a day in the US.
This work aims to predict all types of GS reliably and as early as possible using big data and machine learning algorithms.
arXiv Detail & Related papers (2024-01-17T05:17:40Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Predicting the Geoeffectiveness of CMEs Using Machine Learning [0.0]
This work focuses on experimenting with different machine learning methods trained on white-light coronagraph datasets.
We develop binary classification models using logistic regression, K-Nearest Neighbors, Support Vector Machines, feed forward artificial neural networks, as well as ensemble models.
We discuss the main challenges of this task, namely the extreme imbalance between the number of geoeffective and ineffective events in our dataset.
arXiv Detail & Related papers (2022-06-23T03:56:22Z) - A Machine Learning and Computer Vision Approach to Geomagnetic Storm
Forecasting [2.0499240875882]
Geomagnetic storms are disturbances of Earth's magnetosphere caused by masses of charged particles being emitted from the Sun.
Current prediction methods at NOAA are limited in that they depend on expensive solar wind spacecraft and a global-scale magnetometer sensor network.
We introduce a novel machine learning and computer vision approach to accurately forecast geomagnetic storms without the need of such costly physical measurements.
arXiv Detail & Related papers (2022-04-04T15:38:33Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.