Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
- URL: http://arxiv.org/abs/2405.02581v1
- Date: Sat, 4 May 2024 06:31:38 GMT
- Title: Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
- Authors: Niccolò Biondi, Federico Pernici, Simone Ricci, Alberto Del Bimbo,
- Abstract summary: Learning compatible representations enables the interchangeable use of semantic features as models are updated over time.
This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model.
We show that the stationary representations learned by the $d$-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition.
- Score: 20.96380700548786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the $d$-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.
Related papers
- Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer [20.96380700548786]
Visual retrieval systems face challenges when updating models with improved representations due to misalignment between the old and new representations.
Prior research has explored backward-compatible training methods that enable direct comparisons between new and old representations without backfilling.
In this paper, we address achieving a balance between backward compatibility and the performance of independently trained models.
arXiv Detail & Related papers (2024-08-16T15:05:28Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences.
We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision.
Our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW.
arXiv Detail & Related papers (2023-11-30T13:22:15Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text.
This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model.
We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle.
arXiv Detail & Related papers (2023-10-23T04:35:58Z) - FastFill: Efficient Compatible Model Update [40.27741553705222]
FastFill is a compatible model update process using feature alignment and policy based partial backfilling.
We show that previous backfilling strategies suffer from decreased performance and demonstrate the importance of both the training objective and the ordering in online partial backfilling.
arXiv Detail & Related papers (2023-03-08T18:03:51Z) - Towards Universal Backward-Compatible Representation Learning [29.77801805854168]
backward-compatible representation learning is introduced to support backfill-free model upgrades.
We first introduce a new problem of universal backward-compatible representation learning, covering all possible data split in model upgrades.
We propose a simple yet effective method, dubbed Universal Backward- Training (UniBCT) with a novel structural prototype refinement algorithm.
arXiv Detail & Related papers (2022-03-03T09:23:51Z) - Forward Compatible Training for Representation Learning [53.300192863727226]
backward compatible training (BCT) modifies training of the new model to make its representations compatible with those of the old model.
BCT can significantly hinder the performance of the new model.
In this work, we propose a new learning paradigm for representation learning: forward compatible training (FCT)
arXiv Detail & Related papers (2021-12-06T06:18:54Z) - CoReS: Compatible Representations via Stationarity [20.607894099896214]
In visual search systems, compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time.
We propose CoReS, a new training procedure to learn representations that are textitcompatible with those previously learned.
We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set.
arXiv Detail & Related papers (2021-11-15T09:35:54Z) - Towards Backward-Compatible Representation Learning [86.39292571306395]
We propose a way to learn visual features that are compatible with previously computed ones even when they have different dimensions.
This enables visual search systems to bypass computing new features for all previously seen images when updating the embedding models.
We propose a framework to train embedding models, called backward-compatible training (BCT), as a first step towards backward compatible representation learning.
arXiv Detail & Related papers (2020-03-26T14:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.