TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes
- URL: http://arxiv.org/abs/2405.02762v2
- Date: Wed, 18 Sep 2024 17:28:24 GMT
- Title: TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes
- Authors: Christopher Maxey, Jaehoon Choi, Yonghan Lee, Hyungtae Lee, Dinesh Manocha, Heesung Kwon,
- Abstract summary: We present a new approach to bridge the domain gap between synthetic and real-world data for unmanned aerial vehicle (UAV)-based perception.
Our formulation is designed for dynamic scenes, consisting of small moving objects or human actions.
We evaluate its performance on challenging datasets, including Okutama Action and UG2.
- Score: 58.180556221044235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a new approach to bridge the domain gap between synthetic and real-world data for unmanned aerial vehicle (UAV)-based perception. Our formulation is designed for dynamic scenes, consisting of small moving objects or human actions. We propose an extension of K-Planes Neural Radiance Field (NeRF), wherein our algorithm stores a set of tiered feature vectors. The tiered feature vectors are generated to effectively model conceptual information about a scene as well as an image decoder that transforms output feature maps into RGB images. Our technique leverages the information amongst both static and dynamic objects within a scene and is able to capture salient scene attributes of high altitude videos. We evaluate its performance on challenging datasets, including Okutama Action and UG2, and observe considerable improvement in accuracy over state of the art neural rendering methods.
Related papers
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
We present a method to learn compositional predictive models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks.
NeRFs have become a popular choice for representing scenes due to their strong 3D prior.
For planning, we utilize RRTs in the learned latent space, where we can exploit our model and the implicit object encoder to make sampling the latent space informative and more efficient.
arXiv Detail & Related papers (2022-02-24T01:31:29Z) - Recent Trends in 2D Object Detection and Applications in Video Event
Recognition [0.76146285961466]
We discuss the pioneering works in object detection, followed by the recent breakthroughs that employ deep learning.
We highlight recent datasets for 2D object detection both in images and videos, and present a comparative performance summary of various state-of-the-art object detection techniques.
arXiv Detail & Related papers (2022-02-07T14:15:11Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [52.84233165201391]
We present a domain- and user-preference-agnostic approach to detect highlightable excerpts from human-centric videos.
We use an autoencoder network equipped with spatial-temporal graph convolutions to detect human activities and interactions.
We observe a 4-12% improvement in the mean average precision of matching the human-annotated highlights over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-05T01:18:15Z) - Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via
Geometry-Aware Adversarial Learning [9.150245363036165]
Dynamic objects have a significant impact on the robot's perception of the environment.
In this work, we address this problem by synthesizing plausible color, texture and geometry in regions occluded by dynamic objects.
We optimize our architecture using adversarial training to synthesize fine realistic textures which enables it to hallucinate color and depth structure in occluded regions online.
arXiv Detail & Related papers (2020-08-12T01:23:21Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.