A self-supervised text-vision framework for automated brain abnormality detection
- URL: http://arxiv.org/abs/2405.02782v2
- Date: Wed, 12 Jun 2024 01:01:51 GMT
- Title: A self-supervised text-vision framework for automated brain abnormality detection
- Authors: David A. Wood, Emily Guilhem, Sina Kafiabadi, Ayisha Al Busaidi, Kishan Dissanayake, Ahmed Hammam, Nina Mansoor, Matthew Townend, Siddharth Agarwal, Yiran Wei, Asif Mazumder, Gareth J. Barker, Peter Sasieni, Sebastien Ourselin, James H. Cole, Thomas C. Booth,
- Abstract summary: We present a text-vision framework that learns to detect clinically relevant abnormalities in brain MRI scans.
Our framework could also serve as a clinical decision support tool.
- Score: 1.1852378060341289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks trained on large, expert-labelled datasets are considered state-of-the-art for a range of medical image recognition tasks. However, categorically labelled datasets are time-consuming to generate and constrain classification to a pre-defined, fixed set of classes. For neuroradiological applications in particular, this represents a barrier to clinical adoption. To address these challenges, we present a self-supervised text-vision framework that learns to detect clinically relevant abnormalities in brain MRI scans by directly leveraging the rich information contained in accompanying free-text neuroradiology reports. Our training approach consisted of two-steps. First, a dedicated neuroradiological language model - NeuroBERT - was trained to generate fixed-dimensional vector representations of neuroradiology reports (N = 50,523) via domain-specific self-supervised learning tasks. Next, convolutional neural networks (one per MRI sequence) learnt to map individual brain scans to their corresponding text vector representations by optimising a mean square error loss. Once trained, our text-vision framework can be used to detect abnormalities in unreported brain MRI examinations by scoring scans against suitable query sentences (e.g., 'there is an acute stroke', 'there is hydrocephalus' etc.), enabling a range of classification-based applications including automated triage. Potentially, our framework could also serve as a clinical decision support tool, not only by suggesting findings to radiologists and detecting errors in provisional reports, but also by retrieving and displaying examples of pathologies from historical examinations that could be relevant to the current case based on textual descriptors.
Related papers
- AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - Breaking with Fixed Set Pathology Recognition through Report-Guided
Contrastive Training [23.506879497561712]
We employ a contrastive global-local dual-encoder architecture to learn concepts directly from unstructured medical reports.
We evaluate our approach on the large-scale chest X-Ray datasets MIMIC-CXR, CheXpert, and ChestX-Ray14 for disease classification.
arXiv Detail & Related papers (2022-05-14T21:44:05Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
The PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD)
PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias.
PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias.
arXiv Detail & Related papers (2021-06-13T11:10:02Z) - Explaining Predictions of Deep Neural Classifier via Activation Analysis [0.11470070927586014]
We present a novel approach to explain and support an interpretation of the decision-making process to a human expert operating a deep learning system based on Convolutional Neural Network (CNN)
Our results indicate that our method is capable of detecting distinct prediction strategies that enable us to identify the most similar predictions from an existing atlas.
arXiv Detail & Related papers (2020-12-03T20:36:19Z) - Labelling imaging datasets on the basis of neuroradiology reports: a
validation study [0.3871995016053975]
We show that, in our experience, assigning binary labels to images from reports alone is highly accurate.
In contrast to the binary labels, however, the accuracy of more granular labelling is dependent on the category.
We also show that downstream model performance is reduced when labelling of training reports is performed by a non-specialist.
arXiv Detail & Related papers (2020-07-08T16:12:10Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.