Verlet Flows: Exact-Likelihood Integrators for Flow-Based Generative Models
- URL: http://arxiv.org/abs/2405.02805v1
- Date: Sun, 5 May 2024 03:47:56 GMT
- Title: Verlet Flows: Exact-Likelihood Integrators for Flow-Based Generative Models
- Authors: Ezra Erives, Bowen Jing, Tommi Jaakkola,
- Abstract summary: We present Verlet flows, a class of CNFs on an augmented state-space inspired by symplectic from Hamiltonian dynamics.
Verlet flows provide exact-likelihood generative models which generalize coupled flow architectures from a non-continuous setting while imposing minimal expressivity constraints.
On experiments over toy densities, we demonstrate that the variance of the commonly used Hutchinson trace estimator is unsuitable for importance sampling, whereas Verlet flows perform comparably to full autograd trace computations while being significantly faster.
- Score: 4.9425328004453375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximations in computing model likelihoods with continuous normalizing flows (CNFs) hinder the use of these models for importance sampling of Boltzmann distributions, where exact likelihoods are required. In this work, we present Verlet flows, a class of CNFs on an augmented state-space inspired by symplectic integrators from Hamiltonian dynamics. When used with carefully constructed Taylor-Verlet integrators, Verlet flows provide exact-likelihood generative models which generalize coupled flow architectures from a non-continuous setting while imposing minimal expressivity constraints. On experiments over toy densities, we demonstrate that the variance of the commonly used Hutchinson trace estimator is unsuitable for importance sampling, whereas Verlet flows perform comparably to full autograd trace computations while being significantly faster.
Related papers
- Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Gaussian Interpolation Flows [11.340847429991525]
This work investigates the well-posedness of simulation-free continuous normalizing flows built on Gaussian denoising.
We establish the Lipschitz regularity of the flow velocity field, the existence and uniqueness of the flow, and the continuity of the flow map.
We also study the stability of these flows in source distributions and perturbations of the velocity field, using the quadratic Wasserstein distance as a metric.
arXiv Detail & Related papers (2023-11-20T00:59:20Z) - Equivariant flow matching [0.9208007322096533]
We introduce equivariant flow matching, a new training objective for equivariant continuous normalizing flows (CNFs)
Equivariant flow matching exploits the physical symmetries of the target energy for efficient, simulation-free training of equivariant CNFs.
Our results show that the equivariant flow matching objective yields flows with shorter integration paths, improved sampling efficiency, and higher scalability compared to existing methods.
arXiv Detail & Related papers (2023-06-26T19:40:10Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Attentive Contractive Flow with Lipschitz-constrained Self-Attention [25.84621883831624]
We introduce a novel approach called Attentive Contractive Flow (ACF)
ACF utilizes a special category of flow-based generative models - contractive flows.
We demonstrate that ACF can be introduced into a variety of state of the art flow models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-24T18:02:49Z) - Generative Flows with Invertible Attentions [135.23766216657745]
We introduce two types of invertible attention mechanisms for generative flow models.
We exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps.
Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models.
arXiv Detail & Related papers (2021-06-07T20:43:04Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
and Latent Variable Models [11.206144910991481]
We propose a new family of generative flows on an augmented data space, with an aim to improve expressivity without drastically increasing the computational cost of sampling and evaluation of a lower bound on the likelihood.
We demonstrate state-of-the-art performance on standard benchmarks of flow-based generative modeling.
arXiv Detail & Related papers (2020-02-17T17:45:48Z) - Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow [16.41460104376002]
We introduce subset flows, a class of flows that can transform finite volumes and allow exact computation of likelihoods for discrete data.
We identify ordinal discrete autoregressive models, including WaveNets, PixelCNNs and Transformers, as single-layer flows.
We demonstrate state-of-the-art results on CIFAR-10 for flow models trained with dequantization.
arXiv Detail & Related papers (2020-02-06T22:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.