Kinematic analysis of structural mechanics based on convolutional neural network
- URL: http://arxiv.org/abs/2405.02807v1
- Date: Sun, 5 May 2024 04:00:03 GMT
- Title: Kinematic analysis of structural mechanics based on convolutional neural network
- Authors: Leye Zhang, Xiangxiang Tian, Hongjun Zhang,
- Abstract summary: We construct a convolutional neural network model based on the framework and Keras deep learning platform.
The model achieves 100% accuracy on the training set, validation set, and test set.
Using visualization technology, we reveal how convolutional neural network learns and recognizes structural features.
- Score: 1.5496299906248863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attempt to use convolutional neural network to achieve kinematic analysis of plane bar structure. Through 3dsMax animation software and OpenCV module, self-build image dataset of geometrically stable system and geometrically unstable system. we construct and train convolutional neural network model based on the TensorFlow and Keras deep learning platform framework. The model achieves 100% accuracy on the training set, validation set, and test set. The accuracy on the additional test set is 93.7%, indicating that convolutional neural network can learn and master the relevant knowledge of kinematic analysis of structural mechanics. In the future, the generalization ability of the model can be improved through the diversity of dataset, which has the potential to surpass human experts for complex structures. Convolutional neural network has certain practical value in the field of kinematic analysis of structural mechanics. Using visualization technology, we reveal how convolutional neural network learns and recognizes structural features. Using pre-trained VGG16 model for feature extraction and fine-tuning, we found that the generalization ability is inferior to the self-built model.
Related papers
- Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
We introduce a novel neural network training framework that transforms the process by learning architecture and parameters simultaneously with gradient descent.
Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other.
Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
arXiv Detail & Related papers (2024-10-10T19:57:36Z) - Machine learning for structural design models of continuous beam systems via influence zones [3.284878354988896]
This work develops a machine learned structural design model for continuous beam systems from the inverse problem perspective.
The aim of this approach is to conceptualise a non-iterative structural design model that predicts cross-section requirements for continuous beam systems of arbitrary system size.
arXiv Detail & Related papers (2024-03-14T14:53:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
We present a new domain definition language, named PDSketch.
It allows users to flexibly define high-level structures in the transition models.
Details of the transition model will be filled in by trainable neural networks.
arXiv Detail & Related papers (2023-03-09T18:54:12Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Dynamic Analysis of Nonlinear Civil Engineering Structures using
Artificial Neural Network with Adaptive Training [2.1202971527014287]
In this study, artificial neural networks are developed with adaptive training algorithms.
The networks can successfully predict the time-history response of the shear frame and the rock structure to real ground motion records.
arXiv Detail & Related papers (2021-11-21T21:14:48Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.