Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study
- URL: http://arxiv.org/abs/2405.02849v1
- Date: Sun, 5 May 2024 08:42:20 GMT
- Title: Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study
- Authors: Alicia Vidler, Toby Walsh,
- Abstract summary: This paper aims to represent the opaque bilateral market for Australian government bond trading.
The uniqueness of the bilateral market, characterized by negotiated transactions and a limited number of agents, yields valuable insights for agent-based modelling and quantitative finance.
We explore the implications of market rigidity on market structure and consider the element of stability, in market design.
- Score: 15.379345372327375
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Exploring complex adaptive financial trading environments through multi-agent based simulation methods presents an innovative approach within the realm of quantitative finance. Despite the dominance of multi-agent reinforcement learning approaches in financial markets with observable data, there exists a set of systematically significant financial markets that pose challenges due to their partial or obscured data availability. We, therefore, devise a multi-agent simulation approach employing small-scale meta-heuristic methods. This approach aims to represent the opaque bilateral market for Australian government bond trading, capturing the bilateral nature of bank-to-bank trading, also referred to as "over-the-counter" (OTC) trading, and commonly occurring between "market makers". The uniqueness of the bilateral market, characterized by negotiated transactions and a limited number of agents, yields valuable insights for agent-based modelling and quantitative finance. The inherent rigidity of this market structure, which is at odds with the global proliferation of multilateral platforms and the decentralization of finance, underscores the unique insights offered by our agent-based model. We explore the implications of market rigidity on market structure and consider the element of stability, in market design. This extends the ongoing discourse on complex financial trading environments, providing an enhanced understanding of their dynamics and implications.
Related papers
- A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets -- A New Microfoundations of GARCH model [3.655221783356311]
We propose a multi-agent market model to derive the microfoundations of the GARCH model, incorporating three types of agents: noise traders, fundamental traders, and AI traders.
We validate this model through multi-agent simulations, confirming its ability to reproduce the stylized facts of financial markets.
arXiv Detail & Related papers (2024-09-19T07:14:13Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - A Network Simulation of OTC Markets with Multiple Agents [3.8944986367855963]
We present a novel approach to simulating an over-the-counter (OTC) financial market in which trades are intermediated solely by market makers.
We show that our network-based model can lend insights into the effect of market-structure on price-action.
arXiv Detail & Related papers (2024-05-03T20:45:00Z) - A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist [33.82344864007857]
FinAgent is a multimodal foundation agent for financial trading tasks.
It processes a diverse range of data-numerical, textual, and visual-to accurately analyze the financial market.
It integrates established trading strategies and expert insights, ensuring that its trading approaches are both data-driven and rooted in sound financial principles.
arXiv Detail & Related papers (2024-02-28T17:06:54Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - CTMSTOU driven markets: simulated environment for regime-awareness in
trading policies [0.0]
We introduce a novel process to model the fundamental value perceived by market participants: Continuous-Time Markov Switching Trending Ornstein-Uhlenbeck (CTMSTOUrnstein)
We define the notion of regime-awareness for a trading agent as well and illustrate its importance through the study of different order placement strategies in the context of order execution problems.
arXiv Detail & Related papers (2022-02-02T10:27:12Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.