Language Evolution for Evading Social Media Regulation via LLM-based Multi-agent Simulation
- URL: http://arxiv.org/abs/2405.02858v1
- Date: Sun, 5 May 2024 09:02:54 GMT
- Title: Language Evolution for Evading Social Media Regulation via LLM-based Multi-agent Simulation
- Authors: Jinyu Cai, Jialong Li, Mingyue Zhang, Munan Li, Chen-Shu Wang, Kenji Tei,
- Abstract summary: Social media platforms such as Twitter, Reddit, and Sina Weibo play a crucial role in global communication but often encounter strict regulations in geopolitically sensitive regions.
This paper proposes a multi-agent simulation framework using Large Language Models (LLMs) to explore the evolution of user language in regulated social media environments.
- Score: 6.550725258692423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media platforms such as Twitter, Reddit, and Sina Weibo play a crucial role in global communication but often encounter strict regulations in geopolitically sensitive regions. This situation has prompted users to ingeniously modify their way of communicating, frequently resorting to coded language in these regulated social media environments. This shift in communication is not merely a strategy to counteract regulation, but a vivid manifestation of language evolution, demonstrating how language naturally evolves under societal and technological pressures. Studying the evolution of language in regulated social media contexts is of significant importance for ensuring freedom of speech, optimizing content moderation, and advancing linguistic research. This paper proposes a multi-agent simulation framework using Large Language Models (LLMs) to explore the evolution of user language in regulated social media environments. The framework employs LLM-driven agents: supervisory agent who enforce dialogue supervision and participant agents who evolve their language strategies while engaging in conversation, simulating the evolution of communication styles under strict regulations aimed at evading social media regulation. The study evaluates the framework's effectiveness through a range of scenarios from abstract scenarios to real-world situations. Key findings indicate that LLMs are capable of simulating nuanced language dynamics and interactions in constrained settings, showing improvement in both evading supervision and information accuracy as evolution progresses. Furthermore, it was found that LLM agents adopt different strategies for different scenarios.
Related papers
- Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization [13.496120603859701]
Large language model (LLM)-based agents have recently shown impressive progress in a variety of domains.
Applying these agents to social deduction games such as Werewolf, which requires both strategic decision-making and free-form language interaction, remains non-trivial.
We propose Latent Space Policy Optimization (LSPO), an iterative framework that addresses these challenges by first mapping free-form text to a discrete latent space.
arXiv Detail & Related papers (2025-02-07T06:19:55Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Large Language Model-Enabled Multi-Agent Manufacturing Systems [4.139369134071008]
This research introduces a novel framework where large language models enhance the capabilities of agents in manufacturing.
A case study demonstrates the practical application of this framework, showing how agents can effectively communicate, understand tasks, and execute manufacturing processes.
arXiv Detail & Related papers (2024-06-04T01:57:37Z) - Beyond Natural Language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication [79.79948834910579]
Natural language (NL) has long been the predominant format for human cognition and communication.
In this work, we challenge the default use of NL by exploring the utility of non-NL formats in different contexts.
arXiv Detail & Related papers (2024-02-28T16:07:54Z) - SpeechAgents: Human-Communication Simulation with Multi-Modal
Multi-Agent Systems [53.94772445896213]
Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society.
We propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication.
arXiv Detail & Related papers (2024-01-08T15:01:08Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
Social learning uses cues from experts to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks.
This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility.
arXiv Detail & Related papers (2023-02-28T03:23:27Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Inner Monologue: Embodied Reasoning through Planning with Language
Models [81.07216635735571]
Large Language Models (LLMs) can be applied to domains beyond natural language processing.
LLMs planning in embodied environments need to consider not just what skills to do, but also how and when to do them.
We propose that by leveraging environment feedback, LLMs are able to form an inner monologue that allows them to more richly process and plan in robotic control scenarios.
arXiv Detail & Related papers (2022-07-12T15:20:48Z) - Creolizing the Web [2.393911349115195]
We present a method for detecting evolutionary patterns in a sociological model of language evolution.
We develop a minimalistic model that provides a rigorous base for any generalized evolutionary model for language based on communication between individuals.
We present empirical results and their interpretations on a real world dataset from rdt to identify communities and echo chambers for opinions.
arXiv Detail & Related papers (2021-02-24T16:08:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.