A warm Rydberg atom-based quadrature amplitude-modulated receiver
- URL: http://arxiv.org/abs/2405.02901v2
- Date: Tue, 30 Jul 2024 08:35:24 GMT
- Title: A warm Rydberg atom-based quadrature amplitude-modulated receiver
- Authors: Jan Nowosielski, Marcin Jastrzębski, Pavel Halavach, Karol Łukanowski, Marcin Jarzyna, Mateusz Mazelanik, Wojciech Wasilewski, Michał Parniak,
- Abstract summary: Rydberg atoms exhibit remarkable sensitivity to electromagnetic fields, making them promising candidates for field sensors.
We propose a protocol for signal reception near the 2.4 GHz Wi-Fi frequency band, harnessing the capabilities of warm Rydberg atoms.
- Score: 0.9636431845459937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rydberg atoms exhibit remarkable sensitivity to electromagnetic fields, making them promising candidates for revolutionizing field sensors. Unlike conventional antennas, they neither disturb the measured field nor necessitate intricate calibration procedures. In this study, we propose a protocol for signal reception near the 2.4 GHz Wi-Fi frequency band, harnessing the capabilities of warm Rydberg atoms. Our focus lies on exploring various quadrature amplitude modulations and transmission frequencies through heterodyne detection. We offer a comprehensive characterization of our setup, encompassing the atomic response frequency range and attainable electric field amplitudes. Additionally, we delve into analyzing communication errors using Voronoi diagrams, along with evaluating the communication channel capacity across different modulation schemes. Our findings not only lay the groundwork for future wireless communication applications, but also present opportunities to refine protocols in classical communication and field sensing domains.
Related papers
- Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receiver (RAQR) is designed for receiving radio frequency (RF) signals.
RAQRs exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Multichannel, ultra-wideband Rydberg Electrometry with an Optical Frequency Comb [39.876383980625235]
We show the use of a mid-infrared, frequency agile optical frequency comb as the coupling laser for three-photon Rydberg atom electrometry.
The generality and flexibility of this method for wideband multiplexing is anticipated to have transformative effects in the field of Rydberg electrometry.
arXiv Detail & Related papers (2024-09-09T19:22:28Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - High angular momentum coupling for enhanced Rydberg-atom sensing in the
VHF band [33.45861095003339]
This letter documents a series of experiments with Rydberg atomic sensors to collect and process waveforms from the automated identification system (AIS) used in maritime navigation in the Very High Frequency (VHF) band.
We show the results from a new method called High Angular Momentum Matching Excited Raman (HAMMER), which enhances low frequency detection and exhibits superior sensitivity compared to the traditional AC Stark effect.
arXiv Detail & Related papers (2023-10-03T05:53:54Z) - Sensitivity of Rydberg-atom receiver to frequency and amplitude
modulation of microwaves [0.0]
EIT in atomic systems involving Rydberg states is known to be a sensitive probe of incident microwave (MW) fields.
We propose an intelligible analytical model of Rydberg atomic receiver's response to amplitude- (AM) and frequency-modulated (FM) signals.
arXiv Detail & Related papers (2022-06-23T16:55:23Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Deep learning enhanced Rydberg multifrequency microwave recognition [8.648875384426352]
Recognition of multifrequency microwave (MW) electric fields is challenging because of the complex interference of multifrequency fields in practical applications.
Rydberg atom-based measurements for multifrequency MW electric fields is promising in MW radar and MW communications.
arXiv Detail & Related papers (2022-02-28T08:57:47Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.