Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models
- URL: http://arxiv.org/abs/2405.02929v2
- Date: Tue, 7 May 2024 10:58:27 GMT
- Title: Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models
- Authors: Fares Abawi, Di Fu, Stefan Wermter,
- Abstract summary: We develop a deep learning-based social cue integration model for saliency prediction to predict scanpaths in videos.
We evaluate our approach on gaze of dynamic social scenes, observed under the free-viewing condition.
Results indicate that a single unified model, trained on all the observers' scanpaths, performs on par or better than individually trained models.
- Score: 18.327960366321655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous research on scanpath prediction has mainly focused on group models, disregarding the fact that the scanpaths and attentional behaviors of individuals are diverse. The disregard of these differences is especially detrimental to social human-robot interaction, whereby robots commonly emulate human gaze based on heuristics or predefined patterns. However, human gaze patterns are heterogeneous and varying behaviors can significantly affect the outcomes of such human-robot interactions. To fill this gap, we developed a deep learning-based social cue integration model for saliency prediction to instead predict scanpaths in videos. Our model learned scanpaths by recursively integrating fixation history and social cues through a gating mechanism and sequential attention. We evaluated our approach on gaze datasets of dynamic social scenes, observed under the free-viewing condition. The introduction of fixation history into our models makes it possible to train a single unified model rather than the resource-intensive approach of training individual models for each set of scanpaths. We observed that the late neural integration approach surpasses early fusion when training models on a large dataset, in comparison to a smaller dataset with a similar distribution. Results also indicate that a single unified model, trained on all the observers' scanpaths, performs on par or better than individually trained models. We hypothesize that this outcome is a result of the group saliency representations instilling universal attention in the model, while the supervisory signal and fixation history guide it to learn personalized attentional behaviors, providing the unified model a benefit over individual models due to its implicit representation of universal attention.
Related papers
- Geometric Graph Neural Network Modeling of Human Interactions in Crowded Environments [3.7752830020595787]
This paper proposes a geometric graph neural network architecture that integrates domain knowledge from psychological studies to model pedestrian interactions and predict future trajectories.
Evaluations across multiple datasets demonstrate improved prediction accuracy through reduced average and final displacement error metrics.
arXiv Detail & Related papers (2024-10-22T20:33:10Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Learning signatures of decision making from many individuals playing the
same game [54.33783158658077]
We design a predictive framework that learns representations to encode an individual's 'behavioral style'
We apply our method to a large-scale behavioral dataset from 1,000 humans playing a 3-armed bandit task.
arXiv Detail & Related papers (2023-02-21T21:41:53Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
We propose a new framework to evaluate one-shot generative models along two axes: sample recognizability vs. diversity.
We first show that GAN-like and VAE-like models fall on opposite ends of the diversity-recognizability space.
In contrast, disentanglement transports the model along a parabolic curve that could be used to maximize recognizability.
arXiv Detail & Related papers (2022-05-20T13:17:08Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
We propose training deep network models to predict system-level states directly from generic graphical features from the entire view.
Because the resulting predictive models are not based on human-understood predictors, we use explanatory modules.
This represents an example of augmented intelligence in behavioral ecology -- knowledge co-creation in a human-AI team.
arXiv Detail & Related papers (2021-08-20T22:50:41Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Disentangled Sequence Clustering for Human Intention Inference [40.46123013107865]
Disentangled Sequence Clustering Variational Autoencoder (DiSCVAE)
Disentangled Sequence Clustering Variational Autoencoder (DiSCVAE)
arXiv Detail & Related papers (2021-01-23T13:39:34Z) - Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans [0.0]
In decision making tasks under uncertainty, humans display characteristic biases in seeking, integrating, and acting upon information relevant to the task.
Here, we reexamine data from previous carefully designed experiments, collected at scale, that measured and catalogued these biases in aggregate form.
We design deep learning models that replicate these biases in aggregate, while also capturing individual variation in behavior.
arXiv Detail & Related papers (2020-12-09T04:34:58Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.