Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling
- URL: http://arxiv.org/abs/2405.02941v2
- Date: Sun, 12 May 2024 18:41:09 GMT
- Title: Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling
- Authors: Jinmin Li, Tao Dai, Jingyun Zhang, Kang Liu, Jun Wang, Shaoming Wang, Shu-Tao Xia, Rizen Guo,
- Abstract summary: Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling.
However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details.
We propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results.
- Score: 49.215957313126324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling. However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details, which thus hinders their real applications. To address this issue, we propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results. Unlike previous methods that model high-frequency information as standard Gaussian distribution directly, our BDFlow first decouples the high-frequency information into \textit{semantic high-frequency} that adheres to a Boundary distribution and \textit{non-semantic high-frequency} counterpart that adheres to a Gaussian distribution. Specifically, to capture semantic high-frequency parts accurately, we use Boundary-aware Mask (BAM) to constrain the model to produce rich textures, while non-semantic high-frequency part is randomly sampled from a Gaussian distribution.Comprehensive experiments demonstrate that our BDFlow significantly outperforms other state-of-the-art methods while maintaining lower complexity. Notably, our BDFlow improves the PSNR by 4.4 dB and the SSIM by 0.1 on average over GRAIN, utilizing only 74% of the parameters and 20% of the computation. The code will be available at https://github.com/THU-Kingmin/BAFlow.
Related papers
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.
diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.
We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - Normalizing Flows are Capable Generative Models [48.31226028595099]
TarFlow is a simple and scalable architecture that enables highly performant NF models.
It is straightforward to train end-to-end, and capable of directly modeling and generating pixels.
TarFlow sets new state-of-the-art results on likelihood estimation for images, beating the previous best methods by a large margin.
arXiv Detail & Related papers (2024-12-09T09:28:06Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.
For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.
For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - Comparative Study of Coupling and Autoregressive Flows through Robust
Statistical Tests [0.0]
We propose an in-depth comparison of coupling and autoregressive flows, both of the affine and rational quadratic type.
We focus on a set of multimodal target distributions increasing dimensionality ranging from 4 to 400.
Our results indicate that the A-RQS algorithm stands out both in terms of accuracy and training speed.
arXiv Detail & Related papers (2023-02-23T13:34:01Z) - DeFlow: Learning Complex Image Degradations from Unpaired Data with
Conditional Flows [145.83812019515818]
We propose DeFlow, a method for learning image degradations from unpaired data.
We model the degradation process in the latent space of a shared flow-decoder network.
We validate our DeFlow formulation on the task of joint image restoration and super-resolution.
arXiv Detail & Related papers (2021-01-14T18:58:01Z) - Deep Residual Flow for Out of Distribution Detection [27.218308616245164]
We present a novel approach that improves upon the state-of-the-art by leveraging an expressive density model based on normalizing flows.
We demonstrate the effectiveness of our method in ResNet and DenseNet architectures trained on various image datasets.
arXiv Detail & Related papers (2020-01-15T16:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.