Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection
- URL: http://arxiv.org/abs/2405.03063v1
- Date: Sun, 5 May 2024 22:05:02 GMT
- Title: Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection
- Authors: Jingbo Liu,
- Abstract summary: We propose an approximate formula for updating a debiased Lasso coefficient.
As applications, we show that the approximate formula allows us to reduce the complexity of variable selection algorithms.
- Score: 11.490578151974285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Suppose that we first apply the Lasso to a design matrix, and then update one of its columns. In general, the signs of the Lasso coefficients may change, and there is no closed-form expression for updating the Lasso solution exactly. In this work, we propose an approximate formula for updating a debiased Lasso coefficient. We provide general nonasymptotic error bounds in terms of the norms and correlations of a given design matrix's columns, and then prove asymptotic convergence results for the case of a random design matrix with i.i.d.\ sub-Gaussian row vectors and i.i.d.\ Gaussian noise. Notably, the approximate formula is asymptotically correct for most coordinates in the proportional growth regime, under the mild assumption that each row of the design matrix is sub-Gaussian with a covariance matrix having a bounded condition number. Our proof only requires certain concentration and anti-concentration properties to control various error terms and the number of sign changes. In contrast, rigorously establishing distributional limit properties (e.g.\ Gaussian limits for the debiased Lasso) under similarly general assumptions has been considered open problem in the universality theory. As applications, we show that the approximate formula allows us to reduce the computation complexity of variable selection algorithms that require solving multiple Lasso problems, such as the conditional randomization test and a variant of the knockoff filter.
Related papers
- Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Near optimal sample complexity for matrix and tensor normal models via
geodesic convexity [5.191641077435773]
We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics.
In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability.
arXiv Detail & Related papers (2021-10-14T17:47:00Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Fundamental Linear Algebra Problem of Gaussian Inference [14.670851095242451]
We state the Fundamental Linear Algebra Problem of Gaussian Inference (FLAPOGI)
We provide a global solution and then a local version that can be implemented using local message passing amongst agents calculating in parallel.
Contrary to belief propagation, our local scheme is guaranteed to converge in both the mean and desired covariance quantities.
arXiv Detail & Related papers (2020-10-15T21:09:17Z) - The Lasso with general Gaussian designs with applications to hypothesis
testing [21.342900543543816]
The Lasso is a method for high-dimensional regression.
We show that the Lasso estimator can be precisely characterized in the regime in which both $n$ and $p$ are large.
arXiv Detail & Related papers (2020-07-27T17:48:54Z) - Fused-Lasso Regularized Cholesky Factors of Large Nonstationary
Covariance Matrices of Longitudinal Data [0.0]
smoothness of the subdiagonals of the Cholesky factor of large covariance matrices is closely related to the degrees of nonstationarity of autoregressive models for time series and longitudinal data.
We propose an algorithm for sparse estimation of the Cholesky factor which decouple row-wise.
arXiv Detail & Related papers (2020-07-22T02:38:16Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.