SketchGPT: Autoregressive Modeling for Sketch Generation and Recognition
- URL: http://arxiv.org/abs/2405.03099v1
- Date: Mon, 6 May 2024 01:24:14 GMT
- Title: SketchGPT: Autoregressive Modeling for Sketch Generation and Recognition
- Authors: Adarsh Tiwari, Sanket Biswas, Josep Lladós,
- Abstract summary: SketchGPT is a flexible framework that employs a sequence-to-sequence autoregressive model for sketch generation, and completion.
By mapping complex sketches into simplified sequences of abstract primitives, our approach significantly streamlines the input for autoregressive modeling.
- Score: 4.6519578789100215
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present SketchGPT, a flexible framework that employs a sequence-to-sequence autoregressive model for sketch generation, and completion, and an interpretation case study for sketch recognition. By mapping complex sketches into simplified sequences of abstract primitives, our approach significantly streamlines the input for autoregressive modeling. SketchGPT leverages the next token prediction objective strategy to understand sketch patterns, facilitating the creation and completion of drawings and also categorizing them accurately. This proposed sketch representation strategy aids in overcoming existing challenges of autoregressive modeling for continuous stroke data, enabling smoother model training and competitive performance. Our findings exhibit SketchGPT's capability to generate a diverse variety of drawings by adding both qualitative and quantitative comparisons with existing state-of-the-art, along with a comprehensive human evaluation study. The code and pretrained models will be released on our official GitHub.
Related papers
- Customize StyleGAN with One Hand Sketch [0.0]
We propose a framework to control StyleGAN imagery with a single user sketch.
We learn a conditional distribution in the latent space of a pre-trained StyleGAN model via energy-based learning.
Our model can generate multi-modal images semantically aligned with the input sketch.
arXiv Detail & Related papers (2023-10-29T09:32:33Z) - Sketch3T: Test-Time Training for Zero-Shot SBIR [106.59164595640704]
Zero-shot sketch-based image retrieval typically asks for a trained model to be applied as is to unseen categories.
We extend ZS-SBIR asking it to transfer to both categories and sketch distributions.
Our key contribution is a test-time training paradigm that can adapt using just one sketch.
arXiv Detail & Related papers (2022-03-28T12:44:49Z) - B\'ezierSketch: A generative model for scalable vector sketches [132.5223191478268]
We present B'ezierSketch, a novel generative model for fully vector sketches that are automatically scalable and high-resolution.
We first introduce a novel inverse graphics approach to stroke embedding that trains an encoder to embed each stroke to its best fit B'ezier curve.
This enables us to treat sketches as short sequences of paramaterized strokes and thus train a recurrent sketch generator with greater capacity for longer sketches.
arXiv Detail & Related papers (2020-07-04T21:30:52Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
We present a generative model for complex free-form structures such as stroke-based drawing tasks.
Our approach is suitable for interactive use cases such as auto-completing diagrams.
arXiv Detail & Related papers (2020-06-17T15:22:54Z) - Sketch-BERT: Learning Sketch Bidirectional Encoder Representation from
Transformers by Self-supervised Learning of Sketch Gestalt [125.17887147597567]
We present a model of learning Sketch BiBERT Representation from Transformer (Sketch-BERT)
We generalize BERT to sketch domain, with the novel proposed components and pre-training algorithms.
We show that the learned representation of Sketch-BERT can help and improve the performance of the downstream tasks of sketch recognition, sketch retrieval, and sketch gestalt.
arXiv Detail & Related papers (2020-05-19T01:35:44Z) - Deep Self-Supervised Representation Learning for Free-Hand Sketch [51.101565480583304]
We tackle the problem of self-supervised representation learning for free-hand sketches.
Key for the success of our self-supervised learning paradigm lies with our sketch-specific designs.
We show that the proposed approach outperforms the state-of-the-art unsupervised representation learning methods.
arXiv Detail & Related papers (2020-02-03T16:28:29Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
Sketch-based image editing aims to synthesize and modify photos based on the structural information provided by the human-drawn sketches.
Deep Plastic Surgery is a novel, robust and controllable image editing framework that allows users to interactively edit images using hand-drawn sketch inputs.
arXiv Detail & Related papers (2020-01-09T08:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.