Dual Relation Mining Network for Zero-Shot Learning
- URL: http://arxiv.org/abs/2405.03613v1
- Date: Mon, 6 May 2024 16:31:19 GMT
- Title: Dual Relation Mining Network for Zero-Shot Learning
- Authors: Jinwei Han, Yingguo Gao, Zhiwen Lin, Ke Yan, Shouhong Ding, Yuan Gao, Gui-Song Xia,
- Abstract summary: We propose a Dual Relation Mining Network (DRMN) to enable effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer.
Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion.
For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images.
- Score: 48.89161627050706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning (ZSL) aims to recognize novel classes through transferring shared semantic knowledge (e.g., attributes) from seen classes to unseen classes. Recently, attention-based methods have exhibited significant progress which align visual features and attributes via a spatial attention mechanism. However, these methods only explore visual-semantic relationship in the spatial dimension, which can lead to classification ambiguity when different attributes share similar attention regions, and semantic relationship between attributes is rarely discussed. To alleviate the above problems, we propose a Dual Relation Mining Network (DRMN) to enable more effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer. Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion and conducts spatial attention for visual to semantic embedding. Moreover, an attribute-guided channel attention is utilized to decouple entangled semantic features. For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images. Additionally, a global classification branch is introduced as a complement to human-defined semantic attributes, and we then combine the results with attribute-based classification. Extensive experiments demonstrate that the proposed DRMN leads to new state-of-the-art performances on three standard ZSL benchmarks, i.e., CUB, SUN, and AwA2.
Related papers
- CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning [48.46511584490582]
Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories.
Real-world challenges such as distribution imbalances and attribute co-occurrence hinder the discernment of local variances in images.
We propose a bidirectional cross-modal ZSL approach CREST to overcome these challenges.
arXiv Detail & Related papers (2024-04-15T10:19:39Z) - Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning [56.65891462413187]
We propose a progressive semantic-guided vision transformer for zero-shot learning (dubbed ZSLViT)
ZSLViT first introduces semantic-embedded token learning to improve the visual-semantic correspondences via semantic enhancement.
Then, we fuse low semantic-visual correspondence visual tokens to discard the semantic-unrelated visual information for visual enhancement.
arXiv Detail & Related papers (2024-04-11T12:59:38Z) - Dual Feature Augmentation Network for Generalized Zero-shot Learning [14.410978100610489]
Zero-shot learning (ZSL) aims to infer novel classes without training samples by transferring knowledge from seen classes.
Existing embedding-based approaches for ZSL typically employ attention mechanisms to locate attributes on an image.
We propose a novel Dual Feature Augmentation Network (DFAN), which comprises two feature augmentation modules.
arXiv Detail & Related papers (2023-09-25T02:37:52Z) - Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot
Learning [74.48337375174297]
Generalized Zero-Shot Learning (GZSL) identifies unseen categories by knowledge transferred from the seen domain.
We deploy the dual semantic-visual transformer module (DSVTM) to progressively model the correspondences between prototypes and visual features.
DSVTM devises an instance-motivated semantic encoder that learns instance-centric prototypes to adapt to different images, enabling the recast of the unmatched semantic-visual pair into the matched one.
arXiv Detail & Related papers (2023-03-27T15:21:43Z) - VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning [113.50220968583353]
We propose to discover semantic embeddings containing discriminative visual properties for zero-shot learning.
Our model visually divides a set of images from seen classes into clusters of local image regions according to their visual similarity.
We demonstrate that our visually-grounded semantic embeddings further improve performance over word embeddings across various ZSL models by a large margin.
arXiv Detail & Related papers (2022-03-20T03:49:02Z) - MSDN: Mutually Semantic Distillation Network for Zero-Shot Learning [28.330268557106912]
Key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge between visual and attribute features on seen classes.
We propose a Mutually Semantic Distillation Network (MSDN), which progressively distills the intrinsic semantic representations between visual and attribute features.
arXiv Detail & Related papers (2022-03-07T05:27:08Z) - Semantic Disentangling Generalized Zero-Shot Learning [50.259058462272435]
Generalized Zero-Shot Learning (GZSL) aims to recognize images from both seen and unseen categories.
In this paper, we propose a novel feature disentangling approach based on an encoder-decoder architecture.
The proposed model aims to distill quality semantic-consistent representations that capture intrinsic features of seen images.
arXiv Detail & Related papers (2021-01-20T05:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.