OmniActions: Predicting Digital Actions in Response to Real-World Multimodal Sensory Inputs with LLMs
- URL: http://arxiv.org/abs/2405.03901v1
- Date: Mon, 6 May 2024 23:11:00 GMT
- Title: OmniActions: Predicting Digital Actions in Response to Real-World Multimodal Sensory Inputs with LLMs
- Authors: Jiahao Nick Li, Yan Xu, Tovi Grossman, Stephanie Santosa, Michelle Li,
- Abstract summary: Future interactive interfaces should intelligently provide quick access to digital actions based on users' context.
We generated a holistic design space of digital follow-up actions that could be performed in response to different types of multimodal sensory inputs.
We then designed OmniActions, a pipeline powered by large language models (LLMs) that processes multimodal sensory inputs and predicts follow-up actions on the target information.
- Score: 15.402143137362112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The progression to "Pervasive Augmented Reality" envisions easy access to multimodal information continuously. However, in many everyday scenarios, users are occupied physically, cognitively or socially. This may increase the friction to act upon the multimodal information that users encounter in the world. To reduce such friction, future interactive interfaces should intelligently provide quick access to digital actions based on users' context. To explore the range of possible digital actions, we conducted a diary study that required participants to capture and share the media that they intended to perform actions on (e.g., images or audio), along with their desired actions and other contextual information. Using this data, we generated a holistic design space of digital follow-up actions that could be performed in response to different types of multimodal sensory inputs. We then designed OmniActions, a pipeline powered by large language models (LLMs) that processes multimodal sensory inputs and predicts follow-up actions on the target information grounded in the derived design space. Using the empirical data collected in the diary study, we performed quantitative evaluations on three variations of LLM techniques (intent classification, in-context learning and finetuning) and identified the most effective technique for our task. Additionally, as an instantiation of the pipeline, we developed an interactive prototype and reported preliminary user feedback about how people perceive and react to the action predictions and its errors.
Related papers
- A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities [2.916558661202724]
Human Activity Recognition (HAR) systems aim to understand human behaviour and assign a label to each action.
HAR can leverage various data modalities, such as RGB images and video, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, and radar signals.
This paper presents a comprehensive survey of the latest advancements in HAR from 2014 to 2024.
arXiv Detail & Related papers (2024-09-15T10:04:44Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in
3D World [55.878173953175356]
We propose MultiPLY, a multisensory embodied large language model.
We first collect Multisensory Universe, a large-scale multisensory interaction dataset comprising 500k data.
We demonstrate that MultiPLY outperforms baselines by a large margin through a diverse set of embodied tasks.
arXiv Detail & Related papers (2024-01-16T18:59:45Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
We present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning.
We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm.
We demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios.
arXiv Detail & Related papers (2023-10-22T19:13:25Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.