Space-time Reinforcement Network for Video Object Segmentation
- URL: http://arxiv.org/abs/2405.04042v1
- Date: Tue, 7 May 2024 06:26:30 GMT
- Title: Space-time Reinforcement Network for Video Object Segmentation
- Authors: Yadang Chen, Wentao Zhu, Zhi-Xin Yang, Enhua Wu,
- Abstract summary: Video object segmentation (VOS) networks typically use memory-based methods.
These methods suffer from two issues: 1) Challenging data can destroy the space-time coherence between adjacent video frames, and 2) Pixel-level matching will lead to undesired mismatching.
In this paper, we propose to generate an auxiliary frame between adjacent frames, serving as an implicit short-temporal reference for the query one.
- Score: 16.67780344875854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, video object segmentation (VOS) networks typically use memory-based methods: for each query frame, the mask is predicted by space-time matching to memory frames. Despite these methods having superior performance, they suffer from two issues: 1) Challenging data can destroy the space-time coherence between adjacent video frames. 2) Pixel-level matching will lead to undesired mismatching caused by the noises or distractors. To address the aforementioned issues, we first propose to generate an auxiliary frame between adjacent frames, serving as an implicit short-temporal reference for the query one. Next, we learn a prototype for each video object and prototype-level matching can be implemented between the query and memory. The experiment demonstrated that our network outperforms the state-of-the-art method on the DAVIS 2017, achieving a J&F score of 86.4%, and attains a competitive result 85.0% on YouTube VOS 2018. In addition, our network exhibits a high inference speed of 32+ FPS.
Related papers
- Temporally Consistent Referring Video Object Segmentation with Hybrid Memory [98.80249255577304]
We propose an end-to-end R-VOS paradigm that explicitly models temporal consistency alongside the referring segmentation.
Features of frames with automatically generated high-quality reference masks are propagated to segment remaining frames.
Extensive experiments demonstrate that our approach enhances temporal consistency by a significant margin.
arXiv Detail & Related papers (2024-03-28T13:32:49Z) - Per-Clip Video Object Segmentation [110.08925274049409]
Recently, memory-based approaches show promising results on semisupervised video object segmentation.
We treat video object segmentation as clip-wise mask-wise propagation.
We propose a new method tailored for the per-clip inference.
arXiv Detail & Related papers (2022-08-03T09:02:29Z) - Object Propagation via Inter-Frame Attentions for Temporally Stable
Video Instance Segmentation [51.68840525174265]
Video instance segmentation aims to detect, segment, and track objects in a video.
Current approaches extend image-level segmentation algorithms to the temporal domain.
We propose a video instance segmentation method that alleviates the problem due to missing detections.
arXiv Detail & Related papers (2021-11-15T04:15:57Z) - Rethinking Space-Time Networks with Improved Memory Coverage for
Efficient Video Object Segmentation [68.45737688496654]
We establish correspondences directly between frames without re-encoding the mask features for every object.
With the correspondences, every node in the current query frame is inferred by aggregating features from the past in an associative fashion.
We validated that every memory node now has a chance to contribute, and experimentally showed that such diversified voting is beneficial to both memory efficiency and inference accuracy.
arXiv Detail & Related papers (2021-06-09T16:50:57Z) - Spatiotemporal Graph Neural Network based Mask Reconstruction for Video
Object Segmentation [70.97625552643493]
This paper addresses the task of segmenting class-agnostic objects in semi-supervised setting.
We propose a novel graph neuralS network (TG-Net) which captures the local contexts by utilizing all proposals.
arXiv Detail & Related papers (2020-12-10T07:57:44Z) - Dual Temporal Memory Network for Efficient Video Object Segmentation [42.05305410986511]
One of the fundamental challenges in Video Object (VOS) is how to make the most use of the temporal information to boost the performance.
We present an end-to-end network which stores short- and long-term video sequence information preceding the current frame as the temporal memories.
Our network consists of two temporal sub-networks including a short-term memory sub-network and a long-term memory sub-network.
arXiv Detail & Related papers (2020-03-13T06:07:45Z) - CRVOS: Clue Refining Network for Video Object Segmentation [5.947279761429668]
We propose a real-time network, Clue Network for Video Object refining (CRVOS), that does not have any intermediate network to efficiently deal with these scenarios.
Our proposed method shows the fastest fps speed among the existing methods with a competitive accuracy.
On DAVIS 2016 set, our method achieves 63.5 fps and J&F score of 81.6%.
arXiv Detail & Related papers (2020-02-10T10:55:31Z) - Efficient Video Semantic Segmentation with Labels Propagation and
Refinement [138.55845680523908]
This paper tackles the problem of real-time semantic segmentation of high definition videos using a hybrid GPU / CPU approach.
We propose an Efficient Video(EVS) pipeline that combines: (i) On the CPU, a very fast optical flow method, that is used to exploit the temporal aspect of the video and propagate semantic information from one frame to the next.
On the popular Cityscapes dataset with high resolution frames (2048 x 1024), the proposed operating points range from 80 to 1000 Hz on a single GPU and CPU.
arXiv Detail & Related papers (2019-12-26T11:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.