Generalized Cauchy-Schwarz Divergence and Its Deep Learning Applications
- URL: http://arxiv.org/abs/2405.04061v3
- Date: Thu, 6 Jun 2024 02:02:00 GMT
- Title: Generalized Cauchy-Schwarz Divergence and Its Deep Learning Applications
- Authors: Mingfei Lu, Chenxu Li, Shujian Yu, Robert Jenssen, Badong Chen,
- Abstract summary: Divergence measures play a central role and become increasingly essential in deep learning.
We introduce a new measure tailored for multiple distributions named the generalized Cauchy-Schwarz divergence (GCSD)
- Score: 37.349358118385155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Divergence measures play a central role and become increasingly essential in deep learning, yet efficient measures for multiple (more than two) distributions are rarely explored. This becomes particularly crucial in areas where the simultaneous management of multiple distributions is both inevitable and essential. Examples include clustering, multi-source domain adaptation or generalization, and multi-view learning, among others. While computing the mean of pairwise distances between any two distributions is a prevalent method to quantify the total divergence among multiple distributions, it is imperative to acknowledge that this approach is not straightforward and necessitates significant computational resources. In this study, we introduce a new divergence measure tailored for multiple distributions named the generalized Cauchy-Schwarz divergence (GCSD). Additionally, we furnish a kernel-based closed-form sample estimator, making it convenient and straightforward to use in various machine-learning applications. Finally, we explore its profound implications in the realm of deep learning by applying it to tackle two thoughtfully chosen machine-learning tasks: deep clustering and multi-source domain adaptation. Our extensive experimental investigations confirm the robustness and effectiveness of GCSD in both scenarios. The findings also underscore the innovative potential of GCSD and its capability to significantly propel machine learning methodologies that necessitate the quantification of multiple distributions.
Related papers
- Distribution-Dependent Rates for Multi-Distribution Learning [26.38831409926518]
Recent multi-distribution learning framework tackles this objective in a dynamic interaction with the environment.
We provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size.
We devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature.
arXiv Detail & Related papers (2023-12-20T15:50:16Z) - Revisiting Modality Imbalance In Multimodal Pedestrian Detection [6.7841188753203046]
We introduce a novel training setup with regularizer in the multimodal architecture to resolve the problem of this disparity between the modalities.
Specifically, our regularizer term helps to make the feature fusion method more robust by considering both the feature extractors equivalently important during the training.
arXiv Detail & Related papers (2023-02-24T11:56:57Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
We develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains.
Our proposed method -- multi-domain temperature scaling -- uses the robustness in the domains to improve calibration under distribution shift.
arXiv Detail & Related papers (2022-06-06T17:32:12Z) - Investigating Shifts in GAN Output-Distributions [5.076419064097734]
We introduce a loop-training scheme for the systematic investigation of observable shifts between the distributions of real training data and GAN generated data.
Overall, the combination of these methods allows an explorative investigation of innate limitations of current GAN algorithms.
arXiv Detail & Related papers (2021-12-28T09:16:55Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Non-decreasing Quantile Function Network with Efficient Exploration for
Distributional Reinforcement Learning [14.967168108174466]
We first propose a non-decreasing quantile function network (NDQFN) to guarantee the monotonicity of the obtained quantile estimates.
We then design a general exploration framework called distributional prediction error (DPE) which utilizes the entire distribution of the quantile function.
arXiv Detail & Related papers (2021-05-14T08:12:51Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.