A simple theory for training response of deep neural networks
- URL: http://arxiv.org/abs/2405.04074v1
- Date: Tue, 7 May 2024 07:20:15 GMT
- Title: A simple theory for training response of deep neural networks
- Authors: Kenichi Nakazato,
- Abstract summary: Deep neural networks give us a powerful method to model the training dataset's relationship between input and output.
We show the training response consists of some different factors based on training stages, activation functions, or training methods.
In addition, we show feature space reduction as an effect of training dynamics, which can result in network fragility.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks give us a powerful method to model the training dataset's relationship between input and output. We can regard that as a complex adaptive system consisting of many artificial neurons that work as an adaptive memory as a whole. The network's behavior is training dynamics with a feedback loop from the evaluation of the loss function. We already know the training response can be constant or shows power law-like aging in some ideal situations. However, we still have gaps between those findings and other complex phenomena, like network fragility. To fill the gap, we introduce a very simple network and analyze it. We show the training response consists of some different factors based on training stages, activation functions, or training methods. In addition, we show feature space reduction as an effect of stochastic training dynamics, which can result in network fragility. Finally, we discuss some complex phenomena of deep networks.
Related papers
- DASH: Warm-Starting Neural Network Training in Stationary Settings without Loss of Plasticity [11.624569521079426]
We develop a framework emulating real-world neural network training and identify noise memorization as the primary cause of plasticity loss when warm-starting on stationary data.
Motivated by this, we propose Direction-Aware SHrinking (DASH), a method aiming to mitigate plasticity loss by selectively forgetting noise while preserving learned features.
arXiv Detail & Related papers (2024-10-30T22:57:54Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Stacked networks improve physics-informed training: applications to
neural networks and deep operator networks [0.9999629695552196]
We present a novel multifidelity framework for stacking physics-informed neural networks and operator networks.
We show how stacking can be used to improve the accuracy and reduce the required size of physics-informed neural networks and operator networks.
arXiv Detail & Related papers (2023-11-11T05:43:54Z) - Spiking mode-based neural networks [2.5690340428649328]
Spiking neural networks play an important role in brain-like neuromorphic computations and in studying working mechanisms of neural circuits.
One drawback of training a large scale spiking neural network is that updating all weights is quite expensive.
We propose a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices.
arXiv Detail & Related papers (2023-10-23T06:54:17Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Improving the Trainability of Deep Neural Networks through Layerwise
Batch-Entropy Regularization [1.3999481573773072]
We introduce and evaluate the batch-entropy which quantifies the flow of information through each layer of a neural network.
We show that we can train a "vanilla" fully connected network and convolutional neural network with 500 layers by simply adding the batch-entropy regularization term to the loss function.
arXiv Detail & Related papers (2022-08-01T20:31:58Z) - Reconstructing Training Data from Trained Neural Networks [42.60217236418818]
We show in some cases a significant fraction of the training data can in fact be reconstructed from the parameters of a trained neural network classifier.
We propose a novel reconstruction scheme that stems from recent theoretical results about the implicit bias in training neural networks with gradient-based methods.
arXiv Detail & Related papers (2022-06-15T18:35:16Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
We study the benign overfitting phenomenon in training a two-layer convolutional neural network (CNN)
We show that when the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by gradient descent can achieve arbitrarily small training and test loss.
On the other hand, when this condition does not hold, overfitting becomes harmful and the obtained CNN can only achieve constant level test loss.
arXiv Detail & Related papers (2022-02-14T07:45:51Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.