DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects
- URL: http://arxiv.org/abs/2405.04093v1
- Date: Tue, 7 May 2024 07:51:28 GMT
- Title: DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects
- Authors: Da Fu, Mingfei Rong, Eun-Hu Kim, Hao Huang, Witold Pedrycz,
- Abstract summary: This study proposes novel dual-current neural networks (DCNN) to improve the accuracy of fine-grained image classification.
The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features.
- Score: 48.65846477275723
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate classification of fine-grained images remains a challenge in backbones based on convolutional operations or self-attention mechanisms. This study proposes novel dual-current neural networks (DCNN), which combine the advantages of convolutional operations and self-attention mechanisms to improve the accuracy of fine-grained image classification. The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features. Experimental results demonstrated that using DCNN as the backbone network for classifying certain fine-grained benchmark datasets achieved performance advantage improvements of 13.5--19.5% and 2.2--12.9%, respectively, compared to other advanced convolution or attention-based fine-grained backbones.
Related papers
- CAVE: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
In this study, we explore an ensemble-based approach to improve classification accuracy in complex image datasets.
We leverage the unique feature-extraction capabilities of each model to enhance the overall accuracy.
Experimental evaluations demonstrate that the ensemble achieves higher accuracy and robustness across challenging and imbalanced classes.
arXiv Detail & Related papers (2024-10-26T17:25:08Z) - AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain without re-accessing the source domain.
We propose AdaRC, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Learning Granularity-Aware Convolutional Neural Network for Fine-Grained
Visual Classification [0.0]
We propose a novel Granularity-Aware Congrainedal Neural Network (GA-CNN) that progressively explores discriminative features.
GA-CNN does not need bounding boxes/part annotations and can be trained end-to-end.
Our approach achieves state-of-the-art performances on three benchmark datasets.
arXiv Detail & Related papers (2021-03-04T02:18:07Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.