Language Modeling Using Tensor Trains
- URL: http://arxiv.org/abs/2405.04590v1
- Date: Tue, 7 May 2024 18:09:47 GMT
- Title: Language Modeling Using Tensor Trains
- Authors: Zhan Su, Yuqin Zhou, Fengran Mo, Jakob Grue Simonsen,
- Abstract summary: We propose a novel tensor network language model based on the simplest tensor network (i.e., tensor trains), called Tensor Train Language Model' (TTLM)
TTLM represents sentences in an exponential space constructed by the tensor product of words, but computing the probabilities of sentences in a low-dimensional fashion.
- Score: 11.19279979601076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel tensor network language model based on the simplest tensor network (i.e., tensor trains), called `Tensor Train Language Model' (TTLM). TTLM represents sentences in an exponential space constructed by the tensor product of words, but computing the probabilities of sentences in a low-dimensional fashion. We demonstrate that the architectures of Second-order RNNs, Recurrent Arithmetic Circuits (RACs), and Multiplicative Integration RNNs are, essentially, special cases of TTLM. Experimental evaluations on real language modeling tasks show that the proposed variants of TTLM (i.e., TTLM-Large and TTLM-Tiny) outperform the vanilla Recurrent Neural Networks (RNNs) with low-scale of hidden units. (The code is available at https://github.com/shuishen112/tensortrainlm.)
Related papers
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
Formal language theory pertains specifically to recognizers.
It is common to instead use proxy tasks that are similar in only an informal sense.
We correct this mismatch by training and evaluating neural networks directly as binary classifiers of strings.
arXiv Detail & Related papers (2024-11-11T16:33:25Z) - On the Computational Complexity and Formal Hierarchy of Second Order
Recurrent Neural Networks [59.85314067235965]
We extend the theoretical foundation for the $2nd$-order recurrent network ($2nd$ RNN)
We prove there exists a class of a $2nd$ RNN that is Turing-complete with bounded time.
We also demonstrate that $2$nd order RNNs, without memory, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars.
arXiv Detail & Related papers (2023-09-26T06:06:47Z) - Advancing Regular Language Reasoning in Linear Recurrent Neural Networks [56.11830645258106]
We study whether linear recurrent neural networks (LRNNs) can learn the hidden rules in training sequences.
We propose a new LRNN equipped with a block-diagonal and input-dependent transition matrix.
Experiments suggest that the proposed model is the only LRNN capable of performing length extrapolation on regular language tasks.
arXiv Detail & Related papers (2023-09-14T03:36:01Z) - SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks [21.616328837090396]
Spiking Neural Networks (SNNs) leverage sparse and event-driven activations to reduce the computational overhead associated with model inference.
We implement generative language model with binary, event-driven spiking activation units.
SpikeGPT is the largest backpropagation-trained SNN model to date, rendering it suitable for both the generation and comprehension of natural language.
arXiv Detail & Related papers (2023-02-27T16:43:04Z) - Efficiently Trained Low-Resource Mongolian Text-to-Speech System Based
On FullConv-TTS [0.0]
We propose a new text-to-speech system based on deep convolutional neural networks that does not employ any RNN components (recurrent units)
At the same time, we improve the generality and robustness of our model through a series of data augmentation methods such as Time Warping, Frequency Mask, and Time Mask.
The final experimental results show that the TTS model using only the CNN component can reduce the training time compared to the classic TTS models such as Tacotron.
arXiv Detail & Related papers (2022-10-24T14:18:43Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
We exploit a low-rank tensor-train deep neural network (TT-DNN) to build an end-to-end deep learning pipeline, namely LR-TT-DNN.
A hybrid model combining LR-TT-DNN with a convolutional neural network (CNN) is set up to boost the performance.
Our empirical evidence demonstrates that the LR-TT-DNN and CNN+(LR-TT-DNN) models with fewer model parameters can outperform the TT-DNN and CNN+(LR-TT-DNN) counterparts.
arXiv Detail & Related papers (2022-03-11T15:55:34Z) - A Correspondence Variational Autoencoder for Unsupervised Acoustic Word
Embeddings [50.524054820564395]
We propose a new unsupervised model for mapping a variable-duration speech segment to a fixed-dimensional representation.
The resulting acoustic word embeddings can form the basis of search, discovery, and indexing systems for low- and zero-resource languages.
arXiv Detail & Related papers (2020-12-03T19:24:42Z) - Tensor train decompositions on recurrent networks [60.334946204107446]
Matrix product state (MPS) tensor trains have more attractive features than MPOs, in terms of storage reduction and computing time at inference.
We show that MPS tensor trains should be at the forefront of LSTM network compression through a theoretical analysis and practical experiments on NLP task.
arXiv Detail & Related papers (2020-06-09T18:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.