Enhanced Lieb-Robinson bounds for a class of Bose-Hubbard type Hamiltonians
- URL: http://arxiv.org/abs/2405.04672v1
- Date: Tue, 7 May 2024 21:06:40 GMT
- Title: Enhanced Lieb-Robinson bounds for a class of Bose-Hubbard type Hamiltonians
- Authors: Tomotaka Kuwahara, Marius Lemm,
- Abstract summary: We prove that additional physical constraints, translation-invariance and a $p$-body repulsion can lead to a Lieb-Robinson bounds (LRB) for any initial state of bounded energy density.
We also identify examples of quantum states which show that no further enhancement is possible without using additional dynamical constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several recent works have considered Lieb-Robinson bounds (LRBs) for Bose-Hubbard-type Hamiltonians. For certain special classes of initial states (e.g., states with particle-free regions or perturbations of stationary states), the velocity of information propagation was bounded by a constant in time, $v\leq C$, similarly to quantum spin systems. However, for the more general class of bounded-density initial states, the first-named author together with Vu and Saito derived the velocity bound $v\leq C t^{D-1}$, where $D$ is the spatial lattice dimension. For $D\geq 2$, this bound allows for accelerated information propagation. It has been known since the work of Eisert and Gross that some systems of lattice bosons are capable of accelerated information propagation. It is therefore a central question to understand under what conditions the bound $v\leq C t^{D-1}$ can be enhanced. Here, we prove that additional physical constraints, translation-invariance and a $p$-body repulsion of the form $n_x^p$ with $p>D+1$, lead to a LRB with $v\leq C t^{\frac{D}{p-D-1}}$ for any initial state of bounded energy density. We also identify examples of quantum states which show that no further enhancement is possible without using additional dynamical constraints.
Related papers
- From spin squeezing to fast state discrimination [0.0]
A class of entangled states are spin-squeezed states of $N$ two-level atoms.
We show that atomic interactions generate a nonlinear evolution that shears the state's probability density.
The resulting nonlinearity is known to be a powerful resource in quantum computation.
arXiv Detail & Related papers (2024-10-29T13:30:29Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Bound-state confinement after trap-expansion dynamics in integrable systems [0.0]
We investigate bound-state transport in the spin-$1/2$ anisotropic Heisenberg chain ($XXZ$ chain)
In the hydrodynamic regime, if interactions are strong enough, bound states remain confined in the initial region.
Fingerprints of confinement are visible in the space-time profiles of local spin-projection operators.
arXiv Detail & Related papers (2024-02-27T15:50:19Z) - Small-time controllability for the nonlinear Schr\"odinger equation on
$\mathbb{R}^N$ via bilinear electromagnetic fields [55.2480439325792]
We address the small-time controllability problem for a nonlinear Schr"odinger equation (NLS) on $mathbbRN$ in the presence of magnetic and electric external fields.
In detail, we study when it is possible to control the dynamics of (NLS) as fast as desired via sufficiently large control signals.
arXiv Detail & Related papers (2023-07-28T21:30:44Z) - Radial power-like potentials: from the Bohr-Sommerfeld $S$-state
energies to the exact ones [0.0]
The Bohr-Sommerfeld (B-S) quantization condition for $S$-states of the $d$-dimensional radial Schr"odinger equation is proposed.
arXiv Detail & Related papers (2023-05-19T00:51:02Z) - Infinite bound states and $1/n$ energy spectrum induced by a
Coulomb-like potential of type III in a flat band system [0.0]
We investigate the bound states in a one-dimensional spin-1 flat band system with a Coulomb-like potential of type III.
Near the threshold of continuous spectrum, the bound state energy is consistent with the ordinary hydrogen-like atom energy level formula.
arXiv Detail & Related papers (2022-05-21T01:09:04Z) - Power-like potentials: from the Bohr-Sommerfeld energies to exact ones [77.34726150561087]
Bohr-Sommerfeld Energies (BSE) extracted explicitly from the Bohr-Sommerfeld quantization condition are compared with the exact energies.
For physically important cases $m=1,4,6$ for the $100$th excited state BSE coincide with exact ones in 5-6 figures.
arXiv Detail & Related papers (2021-07-31T21:37:50Z) - Finite speed of quantum information in models of interacting bosons at
finite density [0.22843885788439797]
We prove that quantum information propagates with a finite velocity in any model of interacting bosons whose Hamiltonian contains spatially local single-boson hopping terms.
Our bounds are relevant for physically realistic initial conditions in experimentally realized models of interacting bosons.
arXiv Detail & Related papers (2021-06-17T18:00:00Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Scattering data and bound states of a squeezed double-layer structure [77.34726150561087]
A structure composed of two parallel homogeneous layers is studied in the limit as their widths $l_j$ and $l_j$, and the distance between them $r$ shrinks to zero simultaneously.
The existence of non-trivial bound states is proven in the squeezing limit, including the particular example of the squeezed potential in the form of the derivative of Dirac's delta function.
The scenario how a single bound state survives in the squeezed system from a finite number of bound states in the finite system is described in detail.
arXiv Detail & Related papers (2020-11-23T14:40:27Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.