S-EQA: Tackling Situational Queries in Embodied Question Answering
- URL: http://arxiv.org/abs/2405.04732v1
- Date: Wed, 8 May 2024 00:45:20 GMT
- Title: S-EQA: Tackling Situational Queries in Embodied Question Answering
- Authors: Vishnu Sashank Dorbala, Prasoon Goyal, Robinson Piramuthu, Michael Johnston, Dinesh Manocha, Reza Ghanadhan,
- Abstract summary: We present and tackle the problem of Embodied Question Answering with Situational Queries (S-EQA) in a household environment.
We first introduce a novel Prompt-Generate-Evaluate scheme that wraps around an LLM's output to create a dataset of unique situational queries.
We validate the generated dataset via a large scale user-study conducted on M-Turk, and introduce it as S-EQA, the first dataset tackling EQA with situational queries.
- Score: 48.43453390717167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present and tackle the problem of Embodied Question Answering (EQA) with Situational Queries (S-EQA) in a household environment. Unlike prior EQA work tackling simple queries that directly reference target objects and quantifiable properties pertaining them, EQA with situational queries (such as "Is the bathroom clean and dry?") is more challenging, as the agent needs to figure out not just what the target objects pertaining to the query are, but also requires a consensus on their states to be answerable. Towards this objective, we first introduce a novel Prompt-Generate-Evaluate (PGE) scheme that wraps around an LLM's output to create a dataset of unique situational queries, corresponding consensus object information, and predicted answers. PGE maintains uniqueness among the generated queries, using multiple forms of semantic similarity. We validate the generated dataset via a large scale user-study conducted on M-Turk, and introduce it as S-EQA, the first dataset tackling EQA with situational queries. Our user study establishes the authenticity of S-EQA with a high 97.26% of the generated queries being deemed answerable, given the consensus object data. Conversely, we observe a low correlation of 46.2% on the LLM-predicted answers to human-evaluated ones; indicating the LLM's poor capability in directly answering situational queries, while establishing S-EQA's usability in providing a human-validated consensus for an indirect solution. We evaluate S-EQA via Visual Question Answering (VQA) on VirtualHome, which unlike other simulators, contains several objects with modifiable states that also visually appear different upon modification -- enabling us to set a quantitative benchmark for S-EQA. To the best of our knowledge, this is the first work to introduce EQA with situational queries, and also the first to use a generative approach for query creation.
Related papers
- SPARQL Query Generation with LLMs: Measuring the Impact of Training Data Memorization and Knowledge Injection [81.78173888579941]
Large Language Models (LLMs) are considered a well-suited method to increase the quality of the question-answering functionality.<n>LLMs are trained on web data, where researchers have no control over whether the benchmark or the knowledge graph was already included in the training data.<n>This paper introduces a novel method that evaluates the quality of LLMs by generating a SPARQL query from a natural-language question.
arXiv Detail & Related papers (2025-07-18T12:28:08Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Trust but Verify: Programmatic VLM Evaluation in the Wild [62.14071929143684]
Programmatic VLM Evaluation (PROVE) is a new benchmarking paradigm for evaluating VLM responses to open-ended queries.
We benchmark the helpfulness-truthfulness trade-offs of a range ofVLMs on PROVE, finding that very few are in-fact able to achieve a good balance between the two.
arXiv Detail & Related papers (2024-10-17T01:19:18Z) - MemSim: A Bayesian Simulator for Evaluating Memory of LLM-based Personal Assistants [64.41695570145673]
We propose MemSim, a Bayesian simulator designed to automatically construct reliable questions and answers (QAs) from generated user messages.
Based on MemSim, we generate a dataset in the daily-life scenario, named MemDaily, and conduct extensive experiments to assess the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-30T10:19:04Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
We propose W-RAG, a method that draws weak training signals from the downstream task and fine-tunes the retriever to prioritize passages that most benefit the task.
We conduct comprehensive experiments across four publicly available OpenQA datasets to demonstrate that our approach enhances both retrieval and OpenQA performance.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs [3.24692739098077]
Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning.
We evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting.
We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models.
arXiv Detail & Related papers (2024-06-24T22:09:50Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
We investigate the use of Multi-Embodied LLM Explorers (MELE) for question-answering in an unknown environment.
Multiple LLM-based agents independently explore and then answer queries about a household environment.
We analyze different aggregation methods to generate a single, final answer for each query.
arXiv Detail & Related papers (2024-06-16T12:46:40Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
We study the factuality of large language models (LLMs) in the context of answering questions that test current world knowledge.
We introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types.
We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination.
Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA.
arXiv Detail & Related papers (2023-10-05T00:04:12Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
We conduct over a million queries to the mainstream large language models (LLMs) including ChatGPT, LLaMA, and OPT.
We find that ChatGPT is still capable to yield the correct answer even when the input is polluted at an extreme level.
We propose a novel index associated with a dataset that roughly decides the feasibility of using such data for LLM-involved evaluation.
arXiv Detail & Related papers (2023-05-15T15:44:51Z) - Federated Prompting and Chain-of-Thought Reasoning for Improving LLMs
Answering [13.735277588793997]
We investigate how to enhance answer precision in frequently asked questions posed by distributed users using cloud-based Large Language Models (LLMs)
Our study focuses on a typical situations where users ask similar queries that involve identical mathematical reasoning steps and problem-solving procedures.
We propose to improve the distributed synonymous questions using Self-Consistency (SC) and Chain-of-Thought (CoT) techniques.
arXiv Detail & Related papers (2023-04-27T01:48:03Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z) - CQE in OWL 2 QL: A "Longest Honeymoon" Approach (extended version) [13.169982133542266]
We study a dynamic CQE method, namely, we propose to alter the answer to the current query based on the evaluation of previous ones.
We aim at a system that, besides being able to protect confidential data, is maximally cooperative.
arXiv Detail & Related papers (2022-07-22T15:51:15Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.