Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID
- URL: http://arxiv.org/abs/2405.04940v3
- Date: Mon, 1 Jul 2024 02:06:31 GMT
- Title: Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID
- Authors: Wentao Tan, Changxing Ding, Jiayu Jiang, Fei Wang, Yibing Zhan, Dapeng Tao,
- Abstract summary: We study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database.
We obtain substantial training data via Multi-modal Large Language Models (MLLMs)
We introduce a novel method that automatically identifies words in a description that do not correspond with the image.
- Score: 44.372336186832584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
Related papers
- Semantic Alignment for Multimodal Large Language Models [72.10272479476161]
We introduce Semantic Alignment for Multi-modal large language models (SAM)
By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis.
By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis.
arXiv Detail & Related papers (2024-08-23T06:48:46Z) - An Empirical Study and Analysis of Text-to-Image Generation Using Large Language Model-Powered Textual Representation [21.154973705998945]
Existing methods leverage the text encoder of the CLIP model to represent input prompts.
Large Language Models (LLMs) offer multilingual input, accommodate longer context, and achieve superior text representation.
We propose a lightweight adapter that enables fast training of the text-to-image model using the textual representations from LLMs.
arXiv Detail & Related papers (2024-05-21T16:35:02Z) - User-Aware Prefix-Tuning is a Good Learner for Personalized Image
Captioning [35.211749514733846]
Traditional image captioning methods often overlook the preferences and characteristics of users.
Most existing methods emphasize the user context fusion process by memory networks or transformers.
We propose a novel personalized image captioning framework that leverages user context to consider personality factors.
arXiv Detail & Related papers (2023-12-08T02:08:00Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
We demonstrate that Multi-modal Large Language Models (MLLMs) can enhance visual-language representation learning.
Our approach is simple, utilizing MLLMs to extend multiple diverse captions for each image.
We propose "text shearing" to maintain the quality and availability of extended captions.
arXiv Detail & Related papers (2023-11-30T18:05:52Z) - SwitchGPT: Adapting Large Language Models for Non-Text Outputs [28.656227306028743]
Large Language Models (LLMs) are primarily trained on text-based datasets.
LLMs exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs.
We propose a novel approach that evolves a text-based LLM into a multi-modal one.
arXiv Detail & Related papers (2023-09-14T11:38:23Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.